These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 25971040)
1. Enhanced performance of polymer solar cells with a fluorocyanophenyl compound as an additive. Jeong S; Woo S; Lyu HK; Kim WH; Sung SJ; Han YS J Nanosci Nanotechnol; 2014 Dec; 14(12):9219-23. PubMed ID: 25971040 [TBL] [Abstract][Full Text] [Related]
2. Improved photovoltaic properties of polymer solar cells with a phenyl compound as an additive. Jeong S; Woo SH; Lyu HK; Kim C; Kim WH; Han YS J Nanosci Nanotechnol; 2014 Aug; 14(8):5988-92. PubMed ID: 25936042 [TBL] [Abstract][Full Text] [Related]
3. Imidazole-Functionalized Fullerene as a Vertically Phase-Separated Cathode Interfacial Layer of Inverted Ternary Polymer Solar Cells. Li D; Liu Q; Zhen J; Fang Z; Chen X; Yang S ACS Appl Mater Interfaces; 2017 Jan; 9(3):2720-2729. PubMed ID: 28045489 [TBL] [Abstract][Full Text] [Related]
4. In Situ Growth of Metal Sulfide Nanocrystals in Poly(3-hexylthiophene): [6,6]-Phenyl C61-Butyric Acid Methyl Ester Films for Inverted Hybrid Solar Cells with Enhanced Photocurrent. Yang C; Sun Y; Li X; Li C; Tong J; Li J; Zhang P; Xia Y Nanoscale Res Lett; 2018 Jun; 13(1):184. PubMed ID: 29926214 [TBL] [Abstract][Full Text] [Related]
5. Improvement of photovoltaic properties by addition of a perylene compound in P3HT:PCBM BHJ system. Jeong S; Woo SH; Lyu HK; Kim C; Kim H; Han YS J Nanosci Nanotechnol; 2012 May; 12(5):4147-53. PubMed ID: 22852361 [TBL] [Abstract][Full Text] [Related]
6. 1,8-Diiodooctane as the processing additive to improve the efficiency of P3HT:PC61BM solar cells. Fan X; Zhao S; Yue C; Yang Q; Gong W; Chen Y; Wang H; Jia Q; Xu Z; Xu X J Nanosci Nanotechnol; 2014 May; 14(5):3592-6. PubMed ID: 24734595 [TBL] [Abstract][Full Text] [Related]
7. Toward Enhancing Solar Cell Performance: An Effective and "Green" Additive. Tan L; Li P; Zhang Q; Izquierdo R; Chaker M; Ma D ACS Appl Mater Interfaces; 2018 Feb; 10(7):6498-6504. PubMed ID: 29401370 [TBL] [Abstract][Full Text] [Related]
8. Influence of Dimethyl Sulfoxide as Processing Additive for Improving Efficiency of Polymer Solar Cells. Yang BY; He DW; Zhuo ZL; Wang YS Guang Pu Xue Yu Guang Pu Fen Xi; 2017 Jan; 37(1):287-92. PubMed ID: 30221897 [TBL] [Abstract][Full Text] [Related]
9. Employing PCBTDPP as an Efficient Donor Polymer for High Performance Ternary Polymer Solar Cells. Xu B; Saianand G; Roy VAL; Qiao Q; Reza KM; Kang SW Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31470690 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and photovoltaic properties of ester group functionalized polythiophene derivatives. Hu X; Shi M; Chen J; Zuo L; Fu L; Liu Y; Chen H Macromol Rapid Commun; 2011 Mar; 32(6):506-11. PubMed ID: 21433207 [TBL] [Abstract][Full Text] [Related]
11. High efficiency of poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells through precrystallining of poly(3-hexylthiophene) based layer. Chen L; Wang P; Chen Y ACS Appl Mater Interfaces; 2013 Jul; 5(13):5986-93. PubMed ID: 23763345 [TBL] [Abstract][Full Text] [Related]
12. Effects of a heavy atom on molecular order and morphology in conjugated polymer:fullerene photovoltaic blend thin films and devices. Tsoi WC; James DT; Domingo EB; Kim JS; Al-Hashimi M; Murphy CE; Stingelin N; Heeney M; Kim JS ACS Nano; 2012 Nov; 6(11):9646-56. PubMed ID: 23094972 [TBL] [Abstract][Full Text] [Related]
13. Efficient green solar cells via a chemically polymerizable donor-acceptor heterocyclic pentamer. Subbiah J; Beaujuge PM; Choudhury KR; Ellinger S; Reynolds JR; So F ACS Appl Mater Interfaces; 2009 Jun; 1(6):1154-8. PubMed ID: 20355905 [TBL] [Abstract][Full Text] [Related]
14. Dibenzothiophene-Substituted Fullerene Derivative as Electron Acceptor for Polymer Solar Cells. Kim HU; Park JB; Hwang DH J Nanosci Nanotechnol; 2016 May; 16(5):5017-23. PubMed ID: 27483863 [TBL] [Abstract][Full Text] [Related]
15. Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting. Tsai SH; Chang HC; Wang HH; Chen SY; Lin CA; Chen SA; Chueh YL; He JH ACS Nano; 2011 Dec; 5(12):9501-10. PubMed ID: 22034901 [TBL] [Abstract][Full Text] [Related]
16. Improvement in interlayer structure of p-i-n-type organic solar cells with the use of fullerene-linked tetrabenzoporphyrin as additive. Tamura Y; Suzuki M; Nakagawa T; Koganezawa T; Masuo S; Hayashi H; Aratani N; Yamada H RSC Adv; 2018 Oct; 8(61):35237-35245. PubMed ID: 35547058 [TBL] [Abstract][Full Text] [Related]
17. Effects of Ga- and Al-codoped ZnO buffer layer on the performance of inverted polymer solar cells. Lee SJ; Kim DH; Kang JK; Kim DY; Kim HM; Han YS J Nanosci Nanotechnol; 2013 Dec; 13(12):7839-43. PubMed ID: 24266149 [TBL] [Abstract][Full Text] [Related]
18. Improved efficiency of bulk heterojunction polymer solar cells by doping low-bandgap small molecules. An Q; Zhang F; Li L; Wang J; Zhang J; Zhou L; Tang W ACS Appl Mater Interfaces; 2014 May; 6(9):6537-44. PubMed ID: 24735205 [TBL] [Abstract][Full Text] [Related]
19. Insights into the Morphological Instability of Bulk Heterojunction PTB7-Th/PCBM Solar Cells upon High-Temperature Aging. Hsieh YJ; Huang YC; Liu WS; Su YA; Tsao CS; Rwei SP; Wang L ACS Appl Mater Interfaces; 2017 May; 9(17):14808-14816. PubMed ID: 28399362 [TBL] [Abstract][Full Text] [Related]
20. Effect of Blend Composition on Binary Organic Solar Cells Using a Low Band Gap Polymer. Wright M; Lin R; Tayebjee MJ; Yang X; Veettil BP; Wen X; Uddin A J Nanosci Nanotechnol; 2015 Mar; 15(3):2204-11. PubMed ID: 26413641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]