These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 25971055)
1. Electrochemical properties of Si film electrodes grown on current collectors with CuO nanostructures for thin-film microbatteries. Cho GB; Lee WR; Choi HK; Kim KH; Nam TH; Kim GT; Noh JP; Kim KW J Nanosci Nanotechnol; 2014 Dec; 14(12):9300-6. PubMed ID: 25971055 [TBL] [Abstract][Full Text] [Related]
2. Chemical synthesis of flower-like hybrid Cu(OH) Shinde SK; Fulari VJ; Kim DY; Maile NC; Koli RR; Dhaygude HD; Ghodake GS Colloids Surf B Biointerfaces; 2017 Aug; 156():165-174. PubMed ID: 28528133 [TBL] [Abstract][Full Text] [Related]
3. Influences of Ti film thickness on electrochemical properties of Si/Ti/Cu film electrodes. Cho GB; Lee SH; Sung HJ; Noh JP; Ahn HJ; Nam TH; Kim KW J Nanosci Nanotechnol; 2012 Jul; 12(7):5962-6. PubMed ID: 22966689 [TBL] [Abstract][Full Text] [Related]
4. Morphological enhancement to CuO nanostructures by electron beam irradiation for biocompatibility and electrochemical performance. Shinde SK; Kim DY; Ghodake GS; Maile NC; Kadam AA; Lee DS; Rath MC; Fulari VJ Ultrason Sonochem; 2018 Jan; 40(Pt A):314-322. PubMed ID: 28946430 [TBL] [Abstract][Full Text] [Related]
5. Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing. Li C; Kurniawan M; Sun D; Tabata H; Delaunay JJ Nanotechnology; 2015 Jan; 26(1):015503. PubMed ID: 25493443 [TBL] [Abstract][Full Text] [Related]
6. Structural and electrochemical properties of Ag nano-dots combined amorphous Si electrodes for thin-film lithium rechargeable batteries. Ahn HJ; Kim YS; Shim HS; Park BK; Moon WJ; Bae Kim W; Seong TY J Nanosci Nanotechnol; 2010 Dec; 10(12):8199-203. PubMed ID: 21121316 [TBL] [Abstract][Full Text] [Related]
7. RF Magnetron Sputtering Grown Cu2O Film Structural, Morphological, and Electrical Property Dependencies on Substrate Type. Ahn H; Um Y J Nanosci Nanotechnol; 2015 Mar; 15(3):2342-5. PubMed ID: 26413664 [TBL] [Abstract][Full Text] [Related]
8. Investigation of Coral-Like Cu2O Nano/Microstructures as Counter Electrodes for Dye-Sensitized Solar Cells. Tsai CH; Fei PH; Chen CH Materials (Basel); 2015 Aug; 8(9):5715-5729. PubMed ID: 28793531 [TBL] [Abstract][Full Text] [Related]
9. A Step toward High-Energy Silicon-Based Thin Film Lithium Ion Batteries. Reyes Jiménez A; Klöpsch R; Wagner R; Rodehorst UC; Kolek M; Nölle R; Winter M; Placke T ACS Nano; 2017 May; 11(5):4731-4744. PubMed ID: 28437078 [TBL] [Abstract][Full Text] [Related]
10. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol). Chirizzi D; Guascito MR; Filippo E; Tepore A Talanta; 2016 Jan; 147():124-31. PubMed ID: 26592586 [TBL] [Abstract][Full Text] [Related]
11. Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells. Chen LC; Chen CC; Liang KC; Chang SH; Tseng ZL; Yeh SC; Chen CT; Wu WT; Wu CG Nanoscale Res Lett; 2016 Dec; 11(1):402. PubMed ID: 27637894 [TBL] [Abstract][Full Text] [Related]
12. The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection. Cherevko S; Chung CH Talanta; 2010 Jan; 80(3):1371-7. PubMed ID: 20006101 [TBL] [Abstract][Full Text] [Related]
13. Punicalagin Green Functionalized Cu/Cu2O/ZnO/CuO Nanocomposite for Potential Electrochemical Transducer and Catalyst. Fuku X; Kaviyarasu K; Matinise N; Maaza M Nanoscale Res Lett; 2016 Dec; 11(1):386. PubMed ID: 27596839 [TBL] [Abstract][Full Text] [Related]
14. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Song MJ; Hwang SW; Whang D Talanta; 2010 Mar; 80(5):1648-52. PubMed ID: 20152391 [TBL] [Abstract][Full Text] [Related]
15. The influence of oxidation time on the morphologies of TiO2 nanostructures. Zhang Q; Ma L; Xu X; Shao M; Huang J; Han L; Li W J Nanosci Nanotechnol; 2014 Apr; 14(4):3262-5. PubMed ID: 24734765 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of the electrochemical behavior of CuO nanoleaves on MWCNTs/GC composite film modified electrode for determination of norfloxacin. Devaraj M; Deivasigamani RK; Jeyadevan S Colloids Surf B Biointerfaces; 2013 Feb; 102():554-61. PubMed ID: 23104025 [TBL] [Abstract][Full Text] [Related]
17. Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability. Wang P; Ng YH; Amal R Nanoscale; 2013 Apr; 5(7):2952-8. PubMed ID: 23455357 [TBL] [Abstract][Full Text] [Related]
18. Effect of sandblasting and acid surface pretreatment on the specific capacitance of CuO nanostructures grown by hot water treatment for supercapacitor electrode applications. Haque S; Wang D; Ergul B; Basurrah A; Karabacak T Nanotechnology; 2024 May; 35(33):. PubMed ID: 38759634 [TBL] [Abstract][Full Text] [Related]
19. Thin films that consist of CuO mesocrystal nanosheets: an application of microbial-mineralization-inspired approaches to thin-film formation. Ikeda T; Oaki Y; Imai H Chem Asian J; 2013 Sep; 8(9):2064-9. PubMed ID: 23784723 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of CuO and Cu2O nanoparticles in a thick polyimide film by post heat treatment in a controlled-atmosphere. Yoon J; Choi DJ; Kim YH J Nanosci Nanotechnol; 2011 Jan; 11(1):796-800. PubMed ID: 21446548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]