These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 25971071)
1. A novel method to make boron-doped microcrystalline silicon thin films with optimal crystalline volume fraction for thin films solar cell applications. Shin C; Park J; Kim S; Park H; Jung J; Bong S; Lee YJ; Yi J J Nanosci Nanotechnol; 2014 Dec; 14(12):9388-94. PubMed ID: 25971071 [TBL] [Abstract][Full Text] [Related]
2. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells. Park J; Shin C; Park H; Jung J; Lee YJ; Bong S; Dao VA; Balaji N; Yi J J Nanosci Nanotechnol; 2015 Mar; 15(3):2241-6. PubMed ID: 26413646 [TBL] [Abstract][Full Text] [Related]
3. Highly conducting phosphorous doped Nc-Si:H thin films deposited at high deposition rate by hot-wire chemical vapor deposition method. Waman VS; Kamble MM; Ghosh SS; Mayabadi A; Sathe VG; Amalnekar DP; Pathan HM; Jadkar SR J Nanosci Nanotechnol; 2012 Nov; 12(11):8459-66. PubMed ID: 23421231 [TBL] [Abstract][Full Text] [Related]
4. Preparation of phosphorus doped hydrogenated microcrystalline silicon thin films by inductively coupled plasma chemical vapor deposition and their characteristics for solar cell applications. Jeong C; Boo S; Kim TW; Choi BH; Kim HS; Chang DR; Lee JH; Kamisako K J Nanosci Nanotechnol; 2008 Oct; 8(10):5521-6. PubMed ID: 19198490 [TBL] [Abstract][Full Text] [Related]
5. Structure and 1/f noise of boron doped polymorphous silicon films. Li SB; Wu ZM; Jiang YD; Li W; Liao NM; Yu JS Nanotechnology; 2008 Feb; 19(8):085706. PubMed ID: 21730737 [TBL] [Abstract][Full Text] [Related]
6. Characterization of intrinsic a-Si:H films prepared by inductively coupled plasma chemical vapor deposition for solar cell applications. Jeong C; Boo S; Jeon M; Kamisako K J Nanosci Nanotechnol; 2007 Nov; 7(11):4169-73. PubMed ID: 18047144 [TBL] [Abstract][Full Text] [Related]
7. Improved interface passivation by optimizing a polysilicon film under different hydrogen dilution in N-type TOPCon silicon solar cells. Huang Y; Jia L; Shi X; Liu X; Lu W; Cong R; Gao C; Yu W RSC Adv; 2022 Apr; 12(20):12753-12759. PubMed ID: 35480349 [TBL] [Abstract][Full Text] [Related]
8. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment. Wang F; Zhang X; Wang L; Jiang Y; Wei C; Xu S; Zhao Y Phys Chem Chem Phys; 2014 Oct; 16(37):20202-8. PubMed ID: 25138166 [TBL] [Abstract][Full Text] [Related]
9. Role of SiN Wang FH; Kuo HH; Yang CF; Liu MC Materials (Basel); 2014 Feb; 7(2):948-962. PubMed ID: 28788494 [TBL] [Abstract][Full Text] [Related]
10. Effects of low argon dilution ratio on the nanocrystallization and properties of a-Si:H thin films. Li Z; Li W; Cai H; Gong Y; Jiang Y J Nanosci Nanotechnol; 2010 Nov; 10(11):7667-70. PubMed ID: 21138006 [TBL] [Abstract][Full Text] [Related]
11. Development of high conducting phosphorous doped nanocrystalline thin silicon films for silicon heterojunction solar cells application. Bhattacharya S; Pandey A; Alam S; Komarala VK Nanotechnology; 2024 May; 35(32):. PubMed ID: 38710179 [TBL] [Abstract][Full Text] [Related]
12. Investigation of structural disorder using electron temperature in VHF-PECVD on hydrogenated amorphous silicon films for thin film solar cell applications. Shin C; Park J; Kim S; Jang J; Jung J; Lee YJ; Yi J J Nanosci Nanotechnol; 2014 Oct; 14(10):8110-6. PubMed ID: 25942934 [TBL] [Abstract][Full Text] [Related]
13. Effect of argon flow on promoting boron doping for in-situ grown silicon nitride thin films containing silicon quantum dots. Liu J; Liu B; Zhang X; Guo X; Liu SF Nanotechnology; 2017 Jul; 28(28):285202. PubMed ID: 28481219 [TBL] [Abstract][Full Text] [Related]
14. Flexible Solar Cells Using Doped Crystalline Si Film Prepared by Self-Biased Sputtering Solid Doping Source in SiCl4/H2 Microwave Plasma. Hsieh PY; Lee CY; Tai NH ACS Appl Mater Interfaces; 2016 Feb; 8(7):4624-32. PubMed ID: 26815945 [TBL] [Abstract][Full Text] [Related]
15. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas. Cheng Q; Xu S; Ostrikov KK Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937 [TBL] [Abstract][Full Text] [Related]
16. Deposition of boron-doped nanocrystalline silicon carbide thin films using H Liu J; Zhang Y; Fan Z; Sun H; Shan F Nanotechnology; 2020 Apr; 31(27):275705. PubMed ID: 32217826 [TBL] [Abstract][Full Text] [Related]
17. Comparative Study on the Quality of Microcrystalline and Epitaxial Silicon Films Produced by PECVD Using Identical SiF Moreno M; Ponce A; Galindo A; Ortega E; Morales A; Flores J; Ambrosio R; Torres A; Hernandez L; Vazquez-Leal H; Patriarche G; Cabarrocas PRI Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832349 [TBL] [Abstract][Full Text] [Related]
18. Properties of phosphorus-boron co-doped c-Si quantum dots/SiNx:H thin film prepared by PECVD in-situ deposition. Gu Z; Shan F; Liu J Sci Rep; 2024 Sep; 14(1):21612. PubMed ID: 39284882 [TBL] [Abstract][Full Text] [Related]
19. Reduction of tail state on boron doped hydrogenated amorphous silicon oxide films prepared at high hydrogen dilution. Park J; Iftiquar SM; Lee S; Park H; Shin C; Jung J; Lee YJ; Balaji N; Yi J J Nanosci Nanotechnol; 2013 Dec; 13(12):7826-33. PubMed ID: 24266147 [TBL] [Abstract][Full Text] [Related]
20. Novel Boron-Doped p-Type Cu K Markose K; Shaji M; Bhatia S; Nair PR; Saji KJ; Antony A; Jayaraj MK ACS Appl Mater Interfaces; 2020 Mar; 12(11):12972-12981. PubMed ID: 32083458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]