These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25971117)

  • 1. Effect of material properties on stability of silver nanoparticles in water.
    Jang MH; Bae SJ; Lee SK; Lee YJ; Hwang YS
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9665-9. PubMed ID: 25971117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle coating-dependent interaction of molecular weight fractionated natural organic matter: impacts on the aggregation of silver nanoparticles.
    Yin Y; Shen M; Tan Z; Yu S; Liu J; Jiang G
    Environ Sci Technol; 2015 Jun; 49(11):6581-9. PubMed ID: 25941838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions.
    El Badawy AM; Luxton TP; Silva RG; Scheckel KG; Suidan MT; Tolaymat TM
    Environ Sci Technol; 2010 Feb; 44(4):1260-6. PubMed ID: 20099802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of surface coating and environmental conditions on the fate and transport of silver nanoparticles in the aquatic environment.
    Ellis LA; Valsami-Jones E; Lead JR; Baalousha M
    Sci Total Environ; 2016 Oct; 568():95-106. PubMed ID: 27289392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems.
    Angel BM; Batley GE; Jarolimek CV; Rogers NJ
    Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles.
    El Badawy AM; Scheckel KG; Suidan M; Tolaymat T
    Sci Total Environ; 2012 Jul; 429():325-31. PubMed ID: 22578844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver nanoparticle behaviour in lake water depends on their surface coating.
    Jiménez-Lamana J; Slaveykova VI
    Sci Total Environ; 2016 Dec; 573():946-953. PubMed ID: 27599058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of aqueous phase ozonation on aggregation of polyvinylpyrrolidone-capped silver nanoparticles.
    Amiri P; Behin J
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):34838-34851. PubMed ID: 33661499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.
    Wang D; Ge L; He J; Zhang W; Jaisi DP; Zhou D
    J Contam Hydrol; 2014 Aug; 164():35-48. PubMed ID: 24926609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions.
    Huynh KA; Chen KL
    Environ Sci Technol; 2011 Jul; 45(13):5564-71. PubMed ID: 21630686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic-strength-dependent effect of suspended sediment on the aggregation, dissolution and settling of silver nanoparticles.
    Zhao J; Li Y; Wang X; Xia X; Shang E; Ali J
    Environ Pollut; 2021 Jun; 279():116926. PubMed ID: 33751945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation kinetics and mechanisms of silver nanoparticles in simulated pollution water under UV light irradiation.
    Zhang ZG; Wu QT; Shang E; Wang X; Wang K; Zhao J; Duan J; Liu Y; Li Y
    Water Environ Res; 2020 Jun; 92(6):840-849. PubMed ID: 31730245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water.
    Burkowska-But A; Sionkowski G; Walczak M
    J Environ Sci (China); 2014 Mar; 26(3):542-9. PubMed ID: 25079266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Water Res; 2017 Dec; 127():86-95. PubMed ID: 29035769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating.
    He J; Wang D; Zhou D
    Sci Total Environ; 2019 Jan; 648():102-108. PubMed ID: 30114581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconcentration and distribution of silver nanoparticles in Japanese medaka (Oryzias latipes).
    Jung YJ; Kim KT; Kim JY; Yang SY; Lee BG; Kim SD
    J Hazard Mater; 2014 Feb; 267():206-13. PubMed ID: 24457612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the enhanced transport of uncoated and polyvinylpyrrolidone-coated silver nanoparticles in saturated porous media by dissolved black carbons.
    Wang K; Zhang Y; Sun B; Yang Y; Xiao B; Zhu L
    Chemosphere; 2021 Nov; 283():131159. PubMed ID: 34144287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of silver nanoparticles influencing their uptake in and toxicity to the earthworm Lumbricus rubellus following exposure in soil.
    Makama S; Piella J; Undas A; Dimmers WJ; Peters R; Puntes VF; van den Brink NW
    Environ Pollut; 2016 Nov; 218():870-878. PubMed ID: 27524251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silver release from silver nanoparticles in natural waters.
    Dobias J; Bernier-Latmani R
    Environ Sci Technol; 2013 May; 47(9):4140-6. PubMed ID: 23517230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The in Vitro Effect of Polyvinylpyrrolidone and Citrate Coated Silver Nanoparticles on Erythrocytic Oxidative Damage and Eryptosis.
    Ferdous Z; Beegam S; Tariq S; Ali BH; Nemmar A
    Cell Physiol Biochem; 2018; 49(4):1577-1588. PubMed ID: 30223265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.