These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25971265)

  • 1. [Roles of mTORC1 in acute myeloid leukemia].
    Hoshii T; Hirao A
    Rinsho Ketsueki; 2015 Apr; 56(4):359-65. PubMed ID: 25971265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia.
    Gao Y; Gao J; Li M; Zheng Y; Wang Y; Zhang H; Wang W; Chu Y; Wang X; Xu M; Cheng T; Ju Z; Yuan W
    J Hematol Oncol; 2016 Apr; 9():36. PubMed ID: 27071307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mTORC1 is essential for leukemia propagation but not stem cell self-renewal.
    Hoshii T; Tadokoro Y; Naka K; Ooshio T; Muraguchi T; Sugiyama N; Soga T; Araki K; Yamamura K; Hirao A
    J Clin Invest; 2012 Jun; 122(6):2114-29. PubMed ID: 22622041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors.
    Altman JK; Sassano A; Kaur S; Glaser H; Kroczynska B; Redig AJ; Russo S; Barr S; Platanias LC
    Clin Cancer Res; 2011 Jul; 17(13):4378-88. PubMed ID: 21415215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rictor has a pivotal role in maintaining quiescence as well as stemness of leukemia stem cells in MLL-driven leukemia.
    Fang Y; Yang Y; Hua C; Xu S; Zhou M; Guo H; Wang N; Zhao X; Huang L; Yu F; Cheng H; Wang ML; Meng L; Cheng T; Yuan W; Ma D; Zhou J
    Leukemia; 2017 Feb; 31(2):414-422. PubMed ID: 27499138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of mTORC1-S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia.
    Ghosh J; Kapur R
    Exp Hematol; 2017 Jun; 50():13-21. PubMed ID: 28342808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival.
    Feng Y; Wu L
    Biochem Biophys Res Commun; 2017 Feb; 483(2):897-903. PubMed ID: 28082200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mTOR has a developmental stage-specific role in mitochondrial fitness independent of conventional mTORC1 and mTORC2 and the kinase activity.
    Kalim KW; Zhang S; Chen X; Li Y; Yang JQ; Zheng Y; Guo F
    PLoS One; 2017; 12(8):e0183266. PubMed ID: 28813526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MLL-AF9 Expression in Hematopoietic Stem Cells Drives a Highly Invasive AML Expressing EMT-Related Genes Linked to Poor Outcome.
    Stavropoulou V; Kaspar S; Brault L; Sanders MA; Juge S; Morettini S; Tzankov A; Iacovino M; Lau IJ; Milne TA; Royo H; Kyba M; Valk PJM; Peters AHFM; Schwaller J
    Cancer Cell; 2016 Jul; 30(1):43-58. PubMed ID: 27344946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The short form of RON is expressed in acute myeloid leukemia and sensitizes leukemic cells to cMET inhibitors.
    Fialin C; Larrue C; Vergez F; Sarry JE; Bertoli S; Mansat-De Mas V; Demur C; Delabesse E; Payrastre B; Manenti S; Roche S; Récher C
    Leukemia; 2013 Feb; 27(2):325-35. PubMed ID: 22902361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atg5-dependent autophagy contributes to the development of acute myeloid leukemia in an MLL-AF9-driven mouse model.
    Liu Q; Chen L; Atkinson JM; Claxton DF; Wang HG
    Cell Death Dis; 2016 Sep; 7(9):e2361. PubMed ID: 27607576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mTORC1 and mTORC2 have largely distinct functions in Purkinje cells.
    Angliker N; Burri M; Zaichuk M; Fritschy JM; Rüegg MA
    Eur J Neurosci; 2015 Oct; 42(8):2595-612. PubMed ID: 26296489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Id2 and E Proteins Orchestrate the Initiation and Maintenance of MLL-Rearranged Acute Myeloid Leukemia.
    Ghisi M; Kats L; Masson F; Li J; Kratina T; Vidacs E; Gilan O; Doyle MA; Newbold A; Bolden JE; Fairfax KA; de Graaf CA; Firth M; Zuber J; Dickins RA; Corcoran LM; Dawson MA; Belz GT; Johnstone RW
    Cancer Cell; 2016 Jul; 30(1):59-74. PubMed ID: 27374225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RAS oncogene suppression induces apoptosis followed by more differentiated and less myelosuppressive disease upon relapse of acute myeloid leukemia.
    Kim WI; Matise I; Diers MD; Largaespada DA
    Blood; 2009 Jan; 113(5):1086-96. PubMed ID: 18952898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes.
    Jhanwar-Uniyal M; Gillick JL; Neil J; Tobias M; Thwing ZE; Murali R
    Adv Biol Regul; 2015 Jan; 57():64-74. PubMed ID: 25442674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperactivation of mTORC1 and mTORC2 by multiple oncogenic events causes addiction to eIF4E-dependent mRNA translation in T-cell leukemia.
    Schwarzer A; Holtmann H; Brugman M; Meyer J; Schauerte C; Zuber J; Steinemann D; Schlegelberger B; Li Z; Baum C
    Oncogene; 2015 Jul; 34(27):3593-604. PubMed ID: 25241901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ALOX5 exhibits anti-tumor and drug-sensitizing effects in MLL-rearranged leukemia.
    Wang Y; Skibbe JR; Hu C; Dong L; Ferchen K; Su R; Li C; Huang H; Weng H; Huang H; Qin X; Jin J; Chen J; Jiang X
    Sci Rep; 2017 May; 7(1):1853. PubMed ID: 28500307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia.
    Sujobert P; Poulain L; Paubelle E; Zylbersztejn F; Grenier A; Lambert M; Townsend EC; Brusq JM; Nicodeme E; Decrooqc J; Nepstad I; Green AS; Mondesir J; Hospital MA; Jacque N; Christodoulou A; Desouza TA; Hermine O; Foretz M; Viollet B; Lacombe C; Mayeux P; Weinstock DM; Moura IC; Bouscary D; Tamburini J
    Cell Rep; 2015 Jun; 11(9):1446-57. PubMed ID: 26004183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting translation in acute myeloid leukemia: a new paradigm for therapy?
    Tamburini J; Green AS; Chapuis N; Bardet V; Lacombe C; Mayeux P; Bouscary D
    Cell Cycle; 2009 Dec; 8(23):3893-9. PubMed ID: 19934662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MLL-AF9 leukemia stem cells: hardwired or taking cues from the microenvironment?
    Muntean AG; Hess JL
    Cancer Cell; 2008 Jun; 13(6):465-7. PubMed ID: 18538728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.