BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2597140)

  • 21. Secondary and tertiary structure characteristics of Megasphaera elsdenii flavodoxin in the reduced state as determined by two-dimensional 1H NMR.
    van Mierlo CP; Müller F; Vervoort J
    Eur J Biochem; 1990 May; 189(3):589-600. PubMed ID: 2161759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The base sequence of the nifF gene of Klebsiella pneumoniae and homology of the predicted amino acid sequence of its protein product to other flavodoxins.
    Drummond MH
    Biochem J; 1985 Dec; 232(3):891-6. PubMed ID: 3911951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of two different flavodoxins from the eukaryote Chlorella fusca.
    Peleato ML; Ayora S; Inda LA; Gómez-Moreno C
    Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):807-11. PubMed ID: 7945206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative genomic analyses of transport proteins encoded within the red algae Chondrus crispus, Galdieria sulphuraria, and Cyanidioschyzon merolae
    Lee J; Ghosh S; Saier MH
    J Phycol; 2017 Jun; 53(3):503-521. PubMed ID: 28328149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nucleotide sequence of the cox3 gene from Chondrus crispus: evidence that UGA encodes tryptophan and evolutionary implications.
    Boyen C; Leblanc C; Bonnard G; Grienenberger JM; Kloareg B
    Nucleic Acids Res; 1994 Apr; 22(8):1400-3. PubMed ID: 8190631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the sequence which spans the beginning of the insertion region in Anacystis nidulans flavodoxin.
    Tarr GE
    J Mol Biol; 1983 Apr; 165(4):754-5. PubMed ID: 6406675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutant swarms of a totivirus-like entities are present in the red macroalga Chondrus crispus and have been partially transferred to the nuclear genome.
    Rousvoal S; Bouyer B; López-Cristoffanini C; Boyen C; Collén J
    J Phycol; 2016 Aug; 52(4):493-504. PubMed ID: 27151076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Six new candidate members of the alpha/beta twisted open-sheet family detected by sequence similarity to flavodoxin.
    Grandori R; Carey J
    Protein Sci; 1994 Dec; 3(12):2185-93. PubMed ID: 7756978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes.
    Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP
    Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential stabilization of the three FMN redox forms by tyrosine 94 and tryptophan 57 in flavodoxin from Anabaena and its influence on the redox potentials.
    Lostao A; Gómez-Moreno C; Mayhew SG; Sancho J
    Biochemistry; 1997 Nov; 36(47):14334-44. PubMed ID: 9398151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A functional heterologous electron-transfer protein complex: Desulfovibrio vulgaris flavodoxin covalently linked to spinach ferredoxin-NADP+ reductase.
    Pirola MC; Monti F; Aliverti A; Zanetti G
    Arch Biochem Biophys; 1994 Jun; 311(2):480-6. PubMed ID: 8203913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of neighboring FMN side chains in the modulation of flavin reduction potentials and in the energetics of the FMN:apoprotein interaction in Anabaena flavodoxin.
    Nogués I; Campos LA; Sancho J; Gómez-Moreno C; Mayhew SG; Medina M
    Biochemistry; 2004 Dec; 43(48):15111-21. PubMed ID: 15568803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of methionine 56 in the control of the oxidation-reduction potentials of the Clostridium beijerinckii flavodoxin: effects of substitutions by aliphatic amino acids and evidence for a role of sulfur-flavin interactions.
    Druhan LJ; Swenson RP
    Biochemistry; 1998 Jul; 37(27):9668-78. PubMed ID: 9657679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Seasonal acclimatization of thallus proline contents of Mastocarpus stellatus and Chondrus crispus: intertidal rhodophytes that differ in freezing tolerance.
    Harris JP; Logan BA
    J Phycol; 2018 Jun; 54(3):419-422. PubMed ID: 29455456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covalently bound non-coenzyme phosphorus residues in flavoproteins: 31P nuclear magnetic resonance studies of Azotobacter flavodoxin.
    Edmondson DE; James TL
    Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3786-9. PubMed ID: 291038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox potential difference between Desulfovibrio vulgaris and Clostridium beijerinckii flavodoxins.
    Ishikita H
    Biochemistry; 2008 Apr; 47(15):4394-402. PubMed ID: 18355044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple hydrogenase-linked assay for ferredoxin and flavodoxin.
    Chen JS; Blanchard DK
    Anal Biochem; 1979 Feb; 93(1):216-22. PubMed ID: 434466
    [No Abstract]   [Full Text] [Related]  

  • 38. pH-dependent spectroscopic changes associated with the hydroquinone of FMN in flavodoxins.
    Yalloway GN; Mayhew SG; Malthouse JP; Gallagher ME; Curley GP
    Biochemistry; 1999 Mar; 38(12):3753-62. PubMed ID: 10090764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cofactor-induced reversible folding of Flavodoxin-4 from Lactobacillus acidophilus.
    Dutta SK; Serrano P; Geralt M; Axelrod HL; Xu Q; Lesley SA; Godzik A; Deacon AM; Elsliger MA; Wilson IA; Wüthrich K
    Protein Sci; 2015 Oct; 24(10):1600-8. PubMed ID: 26177955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing the Performance of Non-Equilibrium Thermodynamic Integration in Flavodoxin Redox Potential Estimation.
    Silvestri G; Arrigoni F; Persico F; Bertini L; Zampella G; De Gioia L; Vertemara J
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.