These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2597153)

  • 61. Genetically marked Rhizobium identifiable as inoculum strain in nodules of soybean plants grown in fields populated with Rhizobium japonicum.
    Kuykendall LD; Weber DF
    Appl Environ Microbiol; 1978 Dec; 36(6):915-9. PubMed ID: 570015
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Isolation and characterization of rhizobitoxine mutants of Bradyrhizobium japonicum.
    Ruan X; Peters NK
    J Bacteriol; 1992 Jun; 174(11):3467-73. PubMed ID: 1317377
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Lipopolysaccharide epitope expression of Rhizobium bacteroids as revealed by in situ immunolabelling of pea root nodule sections.
    Kannenberg EL; Perotto S; Bianciotto V; Rathbun EA; Brewin NJ
    J Bacteriol; 1994 Apr; 176(7):2021-32. PubMed ID: 7511581
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Key roles of microsymbiont amino acid metabolism in rhizobia-legume interactions.
    Dunn MF
    Crit Rev Microbiol; 2015; 41(4):411-51. PubMed ID: 24601835
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules.
    Pandya M; Kumar GN; Rajkumar S
    FEMS Microbiol Lett; 2013 Nov; 348(1):58-65. PubMed ID: 24033808
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Occurrence of polyamines in root nodules of Phaseolus vulgaris in symbiosis with Rhizobium tropici in response to salt stress.
    López-Gómez M; Cobos-Porras L; Hidalgo-Castellanos J; Lluch C
    Phytochemistry; 2014 Nov; 107():32-41. PubMed ID: 25220497
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Response of rhizobial populations to moderate copper stress applied to an agricultural soil.
    Laguerre G; Courde L; Nouaïm R; Lamy I; Revellin C; Breuil MC; Chaussod R
    Microb Ecol; 2006 Oct; 52(3):426-35. PubMed ID: 16897301
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Investigations of Rhizobium biofilm formation.
    Fujishige NA; Kapadia NN; De Hoff PL; Hirsch AM
    FEMS Microbiol Ecol; 2006 May; 56(2):195-206. PubMed ID: 16629750
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism.
    Gano-Cohen KA; Stokes PJ; Blanton MA; Wendlandt CE; Hollowell AC; Regus JU; Kim D; Patel S; Pahua VJ; Sachs JL
    Appl Environ Microbiol; 2016 Sep; 82(17):5259-68. PubMed ID: 27316960
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Molecular insights into bacteroid development during Rhizobium-legume symbiosis.
    Haag AF; Arnold MF; Myka KK; Kerscher B; Dall'Angelo S; Zanda M; Mergaert P; Ferguson GP
    FEMS Microbiol Rev; 2013 May; 37(3):364-83. PubMed ID: 22998605
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [A study on taxonomy of Rhizobia isolated from Astragalus sp].
    Wang S; Chen W
    Wei Sheng Wu Xue Bao; 1997 Oct; 37(5):335-43. PubMed ID: 11189357
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria.
    Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M
    Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The role of polyamine depletion and accumulation of decarboxylated S-adenosylmethionine in the inhibition of growth of SV-3T3 cells treated with alpha-difluoromethylornithine.
    Pegg AE
    Biochem J; 1984 Nov; 224(1):29-38. PubMed ID: 6439194
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Growth of Indigenous Rhizobium leguminosarum and Rhizobium meliloti in Soils Amended with Organic Nutrients.
    Germida JJ
    Appl Environ Microbiol; 1988 Jan; 54(1):257-263. PubMed ID: 16347530
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Naturally occurring polyamines: interaction with macromolecules.
    Bachrach U
    Curr Protein Pept Sci; 2005 Dec; 6(6):559-66. PubMed ID: 16381604
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Sensitivity of Rhizobium to selected isoflavonoids.
    Pankhurst CE; Biggs DR
    Can J Microbiol; 1980 Apr; 26(4):542-5. PubMed ID: 7378947
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of polyamines and analogs on staphylococcal nuclease.
    Yanagawa H; Ogawa Y; Egami F
    Z Allg Mikrobiol; 1976; 16(8):627-32. PubMed ID: 1034376
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparative properties of glutamine synthetases I and II in Rhizobium and Agrobacterium spp.
    Fuchs RL; Keister DL
    J Bacteriol; 1980 Nov; 144(2):641-8. PubMed ID: 6107288
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fast- and slow-growing rhizobia: differences in sucrose utilization and invertase activity.
    Martinez-de Drets G; Arias A; Rovira de Cutinella M
    Can J Microbiol; 1974 Apr; 20(4):605-9. PubMed ID: 4828871
    [No Abstract]   [Full Text] [Related]  

  • 80. Evidence for the presence of a novel biosynthetic pathway for norspermidine in Vibrio.
    Yamamoto S; Hamanaka K; Suemoto Y; Ono B; Shinoda S
    Can J Microbiol; 1986 Feb; 32(2):99-103. PubMed ID: 3697846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.