These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25971627)

  • 1. Singlet and triplet excitons and charge polarons in cycloparaphenylenes: a density functional theory study.
    Liu J; Adamska L; Doorn SK; Tretiak S
    Phys Chem Chem Phys; 2015 Jun; 17(22):14613-22. PubMed ID: 25971627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of triplet-excited [N]cycloparaphenylenes (N = 8-12): excitation energies lower than those of linear oligomers and polymers.
    Fujitsuka M; Lu C; Iwamoto T; Kayahara E; Yamago S; Majima T
    J Phys Chem A; 2014 Jun; 118(25):4527-32. PubMed ID: 24914824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitons and Polarons in Organic Materials.
    Ghosh R; Spano FC
    Acc Chem Res; 2020 Oct; 53(10):2201-2211. PubMed ID: 33035054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Geometric Distortion and Polarization in Localizing Electronic Excitations in Conjugated Polymers.
    Nayyar IH; Batista ER; Tretiak S; Saxena A; Smith DL; Martin RL
    J Chem Theory Comput; 2013 Feb; 9(2):1144-54. PubMed ID: 26588757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic excited states and electronic spectra of biphenyl: a study using many-body wavefunction methods and density functional theories.
    Fukuda R; Ehara M
    Phys Chem Chem Phys; 2013 Oct; 15(40):17426-34. PubMed ID: 24022338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of absorption and emission spectra of [n]cycloparaphenylenes: the reason for the large Stokes shift.
    Sundholm D; Taubert S; Pichierri F
    Phys Chem Chem Phys; 2010 Mar; 12(11):2751-7. PubMed ID: 20200754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excited States in Cycloparaphenylenes: Dependence of Optical Properties on Ring Length.
    Nishihara T; Segawa Y; Itami K; Kanemitsu Y
    J Phys Chem Lett; 2012 Nov; 3(21):3125-8. PubMed ID: 26296017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoinduced dynamics in cycloparaphenylenes: planarization, electron-phonon coupling, localization and intra-ring migration of the electronic excitation.
    Oldani N; Doorn SK; Tretiak S; Fernandez-Alberti S
    Phys Chem Chem Phys; 2017 Nov; 19(45):30914-30924. PubMed ID: 29134997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical theory of excitons in conducting polymers.
    Brazovskii S; Kirova N
    Chem Soc Rev; 2010 Jul; 39(7):2453-65. PubMed ID: 20517580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-trapping of excitons, violation of Condon approximation, and efficient fluorescence in conjugated cycloparaphenylenes.
    Adamska L; Nayyar I; Chen H; Swan AK; Oldani N; Fernandez-Alberti S; Golder MR; Jasti R; Doorn SK; Tretiak S
    Nano Lett; 2014 Nov; 14(11):6539-46. PubMed ID: 25310514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of bad dihedral angles: methylfluorenes act as energy barriers for excitons and polarons of oligofluorenes.
    Mani T; Miller JR
    J Phys Chem A; 2014 Oct; 118(40):9451-9. PubMed ID: 25232711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetry in platinum acetylide complexes: confinement of the triplet exciton to the lowest energy ligand.
    Cooper TM; Krein DM; Burke AR; McLean DG; Rogers JE; Slagle JE
    J Phys Chem A; 2006 Dec; 110(50):13370-8. PubMed ID: 17165861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and electronic properties of photoexcited TiO2 nanoparticles from first principles.
    Nunzi F; Agrawal S; Selloni A; De Angelis F
    J Chem Theory Comput; 2015 Feb; 11(2):635-45. PubMed ID: 26579599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigation of excited states of C(3).
    Terentyev A; Scholz R; Schreiber M; Seifert G
    J Chem Phys; 2004 Sep; 121(12):5767-76. PubMed ID: 15367001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Luminescence, singlet oxygen production, and optical power limiting of some diacetylide platinum(II) diphosphine complexes.
    Glimsdal E; Carlsson M; Kindahl T; Lindgren M; Lopes C; Eliasson B
    J Phys Chem A; 2010 Mar; 114(10):3431-42. PubMed ID: 20148542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical excitations of defects in realistic nanoscale silica clusters: comparing the performance of density functional theory using hybrid functionals with correlated wavefunction methods.
    Zwijnenburg MA; Sousa C; Sokol AA; Bromley ST
    J Chem Phys; 2008 Jul; 129(1):014706. PubMed ID: 18624495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The triplet state of cytosine and its derivatives: electron impact and quantum chemical study.
    Abouaf R; Pommier J; Dunet H; Quan P; Nam PC; Nguyen MT
    J Chem Phys; 2004 Dec; 121(23):11668-74. PubMed ID: 15634133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steric Hindrance Governs the Photoinduced Structural Planarization of Cycloparaphenylene Materials.
    Chen S; Miao X; Zhou H; Peng C; Zhang R; Han X
    J Phys Chem A; 2022 Oct; 126(41):7452-7459. PubMed ID: 36205704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of singlet and triplet excitation energies in oligothiophenes.
    Fabiano E; Sala FD; Cingolani R; Weimer M; Görling A
    J Phys Chem A; 2005 Apr; 109(13):3078-85. PubMed ID: 16833632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embedded correlated wavefunction schemes: theory and applications.
    Libisch F; Huang C; Carter EA
    Acc Chem Res; 2014 Sep; 47(9):2768-75. PubMed ID: 24873211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.