BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25971741)

  • 1. Fast parametric time warping of peak lists.
    Wehrens R; Bloemberg TG; Eilers PH
    Bioinformatics; 2015 Sep; 31(18):3063-5. PubMed ID: 25971741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time alignment algorithms based on selected mass traces for complex LC-MS data.
    Christin C; Hoefsloot HC; Smilde AK; Suits F; Bischoff R; Horvatovich PL
    J Proteome Res; 2010 Mar; 9(3):1483-95. PubMed ID: 20070124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-throughput processing service for retention time alignment of complex proteomics and metabolomics LC-MS data.
    Ahmad I; Suits F; Hoekman B; Swertz MA; Byelas H; Dijkstra M; Hooft R; Katsubo D; van Breukelen B; Bischoff R; Horvatovich P
    Bioinformatics; 2011 Apr; 27(8):1176-8. PubMed ID: 21349866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted realignment of LC-MS profiles by neighbor-wise compound-specific graphical time warping with misalignment detection.
    Wu CT; Wang Y; Wang Y; Ebbels T; Karaman I; Graça G; Pinto R; Herrington DM; Wang Y; Yu G
    Bioinformatics; 2020 May; 36(9):2862-2871. PubMed ID: 31950989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating peak grouping information for alignment of multiple liquid chromatography-mass spectrometry datasets.
    Wandy J; Daly R; Breitling R; Rogers S
    Bioinformatics; 2015 Jun; 31(12):1999-2006. PubMed ID: 25649621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification.
    Beirnaert C; Meysman P; Vu TN; Hermans N; Apers S; Pieters L; Covaci A; Laukens K
    PLoS Comput Biol; 2018 Mar; 14(3):e1006018. PubMed ID: 29494588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graph-based peak alignment algorithms for multiple liquid chromatography-mass spectrometry datasets.
    Wang J; Lam H
    Bioinformatics; 2013 Oct; 29(19):2469-76. PubMed ID: 23904508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets.
    Hoffmann N; Keck M; Neuweger H; Wilhelm M; Högy P; Niehaus K; Stoye J
    BMC Bioinformatics; 2012 Aug; 13():214. PubMed ID: 22920415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MetaClean: a machine learning-based classifier for reduced false positive peak detection in untargeted LC-MS metabolomics data.
    Chetnik K; Petrick L; Pandey G
    Metabolomics; 2020 Oct; 16(11):117. PubMed ID: 33085002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MET-COFEA: a liquid chromatography/mass spectrometry data processing platform for metabolite compound feature extraction and annotation.
    Zhang W; Chang J; Lei Z; Huhman D; Sumner LW; Zhao PX
    Anal Chem; 2014 Jul; 86(13):6245-53. PubMed ID: 24856452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MSAcquisitionSimulator: data-dependent acquisition simulator for LC-MS shotgun proteomics.
    Goldfarb D; Wang W; Major MB
    Bioinformatics; 2016 Apr; 32(8):1269-71. PubMed ID: 26685308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mpwR: an R package for comparing performance of mass spectrometry-based proteomic workflows.
    Kardell O; Breimann S; Hauck SM
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37267150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline.
    Jaitly N; Monroe ME; Petyuk VA; Clauss TR; Adkins JN; Smith RD
    Anal Chem; 2006 Nov; 78(21):7397-409. PubMed ID: 17073405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IPO: a tool for automated optimization of XCMS parameters.
    Libiseller G; Dvorzak M; Kleb U; Gander E; Eisenberg T; Madeo F; Neumann S; Trausinger G; Sinner F; Pieber T; Magnes C
    BMC Bioinformatics; 2015 Apr; 16():118. PubMed ID: 25888443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JAMSS: proteomics mass spectrometry simulation in Java.
    Smith R; Prince JT
    Bioinformatics; 2015 Mar; 31(5):791-3. PubMed ID: 25371478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Counting missing values in a metabolite-intensity data set for measuring the analytical performance of a metabolomics platform.
    Huan T; Li L
    Anal Chem; 2015 Jan; 87(2):1306-13. PubMed ID: 25496403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention time alignment of LC/MS data by a divide-and-conquer algorithm.
    Zhang Z
    J Am Soc Mass Spectrom; 2012 Apr; 23(4):764-72. PubMed ID: 22298290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MetTailor: dynamic block summary and intensity normalization for robust analysis of mass spectrometry data in metabolomics.
    Chen G; Cui L; Teo GS; Ong CN; Tan CS; Choi H
    Bioinformatics; 2015 Nov; 31(22):3645-52. PubMed ID: 26220962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. apLCMS--adaptive processing of high-resolution LC/MS data.
    Yu T; Park Y; Johnson JM; Jones DP
    Bioinformatics; 2009 Aug; 25(15):1930-6. PubMed ID: 19414529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MZDASoft: a software architecture that enables large-scale comparison of protein expression levels over multiple samples based on liquid chromatography/tandem mass spectrometry.
    Ghanat Bari M; Ramirez N; Wang Z; Zhang JM
    Rapid Commun Mass Spectrom; 2015 Oct; 29(19):1841-8. PubMed ID: 26331936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.