These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 25971741)
1. Fast parametric time warping of peak lists. Wehrens R; Bloemberg TG; Eilers PH Bioinformatics; 2015 Sep; 31(18):3063-5. PubMed ID: 25971741 [TBL] [Abstract][Full Text] [Related]
2. Time alignment algorithms based on selected mass traces for complex LC-MS data. Christin C; Hoefsloot HC; Smilde AK; Suits F; Bischoff R; Horvatovich PL J Proteome Res; 2010 Mar; 9(3):1483-95. PubMed ID: 20070124 [TBL] [Abstract][Full Text] [Related]
3. A high-throughput processing service for retention time alignment of complex proteomics and metabolomics LC-MS data. Ahmad I; Suits F; Hoekman B; Swertz MA; Byelas H; Dijkstra M; Hooft R; Katsubo D; van Breukelen B; Bischoff R; Horvatovich P Bioinformatics; 2011 Apr; 27(8):1176-8. PubMed ID: 21349866 [TBL] [Abstract][Full Text] [Related]
4. Targeted realignment of LC-MS profiles by neighbor-wise compound-specific graphical time warping with misalignment detection. Wu CT; Wang Y; Wang Y; Ebbels T; Karaman I; Graça G; Pinto R; Herrington DM; Wang Y; Yu G Bioinformatics; 2020 May; 36(9):2862-2871. PubMed ID: 31950989 [TBL] [Abstract][Full Text] [Related]
5. Incorporating peak grouping information for alignment of multiple liquid chromatography-mass spectrometry datasets. Wandy J; Daly R; Breitling R; Rogers S Bioinformatics; 2015 Jun; 31(12):1999-2006. PubMed ID: 25649621 [TBL] [Abstract][Full Text] [Related]
6. speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification. Beirnaert C; Meysman P; Vu TN; Hermans N; Apers S; Pieters L; Covaci A; Laukens K PLoS Comput Biol; 2018 Mar; 14(3):e1006018. PubMed ID: 29494588 [TBL] [Abstract][Full Text] [Related]
7. Graph-based peak alignment algorithms for multiple liquid chromatography-mass spectrometry datasets. Wang J; Lam H Bioinformatics; 2013 Oct; 29(19):2469-76. PubMed ID: 23904508 [TBL] [Abstract][Full Text] [Related]
8. Combining peak- and chromatogram-based retention time alignment algorithms for multiple chromatography-mass spectrometry datasets. Hoffmann N; Keck M; Neuweger H; Wilhelm M; Högy P; Niehaus K; Stoye J BMC Bioinformatics; 2012 Aug; 13():214. PubMed ID: 22920415 [TBL] [Abstract][Full Text] [Related]
9. MetaClean: a machine learning-based classifier for reduced false positive peak detection in untargeted LC-MS metabolomics data. Chetnik K; Petrick L; Pandey G Metabolomics; 2020 Oct; 16(11):117. PubMed ID: 33085002 [TBL] [Abstract][Full Text] [Related]
10. MET-COFEA: a liquid chromatography/mass spectrometry data processing platform for metabolite compound feature extraction and annotation. Zhang W; Chang J; Lei Z; Huhman D; Sumner LW; Zhao PX Anal Chem; 2014 Jul; 86(13):6245-53. PubMed ID: 24856452 [TBL] [Abstract][Full Text] [Related]
11. MSAcquisitionSimulator: data-dependent acquisition simulator for LC-MS shotgun proteomics. Goldfarb D; Wang W; Major MB Bioinformatics; 2016 Apr; 32(8):1269-71. PubMed ID: 26685308 [TBL] [Abstract][Full Text] [Related]
12. mpwR: an R package for comparing performance of mass spectrometry-based proteomic workflows. Kardell O; Breimann S; Hauck SM Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37267150 [TBL] [Abstract][Full Text] [Related]
13. Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. Jaitly N; Monroe ME; Petyuk VA; Clauss TR; Adkins JN; Smith RD Anal Chem; 2006 Nov; 78(21):7397-409. PubMed ID: 17073405 [TBL] [Abstract][Full Text] [Related]
14. IPO: a tool for automated optimization of XCMS parameters. Libiseller G; Dvorzak M; Kleb U; Gander E; Eisenberg T; Madeo F; Neumann S; Trausinger G; Sinner F; Pieber T; Magnes C BMC Bioinformatics; 2015 Apr; 16():118. PubMed ID: 25888443 [TBL] [Abstract][Full Text] [Related]
15. JAMSS: proteomics mass spectrometry simulation in Java. Smith R; Prince JT Bioinformatics; 2015 Mar; 31(5):791-3. PubMed ID: 25371478 [TBL] [Abstract][Full Text] [Related]
16. Counting missing values in a metabolite-intensity data set for measuring the analytical performance of a metabolomics platform. Huan T; Li L Anal Chem; 2015 Jan; 87(2):1306-13. PubMed ID: 25496403 [TBL] [Abstract][Full Text] [Related]
17. Retention time alignment of LC/MS data by a divide-and-conquer algorithm. Zhang Z J Am Soc Mass Spectrom; 2012 Apr; 23(4):764-72. PubMed ID: 22298290 [TBL] [Abstract][Full Text] [Related]
18. MetTailor: dynamic block summary and intensity normalization for robust analysis of mass spectrometry data in metabolomics. Chen G; Cui L; Teo GS; Ong CN; Tan CS; Choi H Bioinformatics; 2015 Nov; 31(22):3645-52. PubMed ID: 26220962 [TBL] [Abstract][Full Text] [Related]
19. apLCMS--adaptive processing of high-resolution LC/MS data. Yu T; Park Y; Johnson JM; Jones DP Bioinformatics; 2009 Aug; 25(15):1930-6. PubMed ID: 19414529 [TBL] [Abstract][Full Text] [Related]
20. MZDASoft: a software architecture that enables large-scale comparison of protein expression levels over multiple samples based on liquid chromatography/tandem mass spectrometry. Ghanat Bari M; Ramirez N; Wang Z; Zhang JM Rapid Commun Mass Spectrom; 2015 Oct; 29(19):1841-8. PubMed ID: 26331936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]