BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 25971841)

  • 1. Evaluation of the influence of cardiac motion on the accuracy and reproducibility of longitudinal measurements and the corresponding image quality in optical frequency domain imaging: an ex vivo investigation of the optimal pullback speed.
    Koyama K; Yoneyama K; Mitarai T; Kuwata S; Kongoji K; Harada T; Akashi YJ
    Int J Cardiovasc Imaging; 2015 Aug; 31(6):1115-23. PubMed ID: 25971841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed intracoronary optical frequency domain imaging: implications for three-dimensional reconstruction and quantitative analysis.
    Okamura T; Onuma Y; Garcia-Garcia HM; Bruining N; Serruys PW
    EuroIntervention; 2012 Feb; 7(10):1216-26. PubMed ID: 22334321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing flushing parameters in intracoronary optical coherence tomography: an in vivo swine study.
    Suter MJ; Kashiwagi M; Gallagher KA; Nadkarni SK; Asanani N; Tanaka A; Conditt GB; Tellez A; Milewski K; Kaluza GL; Granada JF; Bouma BE; Tearney GJ
    Int J Cardiovasc Imaging; 2015 Aug; 31(6):1097-106. PubMed ID: 25922149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interstudy reproducibility of the second generation, Fourier domain optical coherence tomography in patients with coronary artery disease and comparison with intravascular ultrasound: a study applying automated contour detection.
    Jamil Z; Tearney G; Bruining N; Sihan K; van Soest G; Ligthart J; van Domburg R; Bouma B; Regar E
    Int J Cardiovasc Imaging; 2013 Jan; 29(1):39-51. PubMed ID: 22639296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography.
    Ha J; Yoo H; Tearney GJ; Bouma BE
    Int J Cardiovasc Imaging; 2012 Aug; 28(6):1299-304. PubMed ID: 21993895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging.
    Tearney GJ; Waxman S; Shishkov M; Vakoc BJ; Suter MJ; Freilich MI; Desjardins AE; Oh WY; Bartlett LA; Rosenberg M; Bouma BE
    JACC Cardiovasc Imaging; 2008 Nov; 1(6):752-61. PubMed ID: 19356512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vitro and in-vivo imaging of coronary artery stents with Heartbeat OCT.
    Cecchetti L; Wang T; Hoogendoorn A; Witberg KT; Ligthart JMR; Daemen J; van Beusekom HMM; Pfeiffer T; Huber RA; Wentzel JJ; van der Steen AFW; van Soest G
    Int J Cardiovasc Imaging; 2020 Jun; 36(6):1021-1029. PubMed ID: 32112229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: a comparison with intravascular ultrasound and quantitative coronary angiography.
    Okamura T; Onuma Y; Garcia-Garcia HM; van Geuns RJ; Wykrzykowska JJ; Schultz C; van der Giessen WJ; Ligthart J; Regar E; Serruys PW
    EuroIntervention; 2011 Apr; 6(9):1037-45. PubMed ID: 21518674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative precision of optical frequency domain imaging: direct comparison with frequency domain optical coherence tomography and intravascular ultrasound.
    Kobayashi Y; Kitahara H; Tanaka S; Okada K; Kimura T; Ikeno F; Yock PG; Fitzgerald PJ; Honda Y
    Cardiovasc Interv Ther; 2016 Apr; 31(2):79-88. PubMed ID: 26271203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic stent strut detection in intravascular optical coherence tomographic pullback runs.
    Wang A; Eggermont J; Dekker N; Garcia-Garcia HM; Pawar R; Reiber JH; Dijkstra J
    Int J Cardiovasc Imaging; 2013 Jan; 29(1):29-38. PubMed ID: 22618433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method to assess coronary artery bifurcations by OCT: cut-plane analysis for side-branch ostial assessment from a main-vessel pullback.
    Karanasos A; Tu S; van Ditzhuijzen NS; Ligthart JM; Witberg K; Van Mieghem N; van Geuns RJ; de Jaegere P; Zijlstra F; Reiber JH; Regar E
    Eur Heart J Cardiovasc Imaging; 2015 Feb; 16(2):177-89. PubMed ID: 25227268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An assessment of the quality of optical coherence tomography image acquisition.
    Iarossi Zago E; Samdani AJ; Pereira GTR; Vergara-Martel A; Alaiti MA; Dallan LA; Ely Pizzato P; Zimin V; Fares A; Bezerra HG
    Int J Cardiovasc Imaging; 2020 Jun; 36(6):1013-1020. PubMed ID: 32072443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ECG-Triggered, Single Cardiac Cycle, High-Speed, 3D, Intracoronary OCT.
    Jang SJ; Park HS; Song JW; Kim TS; Cho HS; Kim S; Bouma BE; Kim JW; Oh WY
    JACC Cardiovasc Imaging; 2016 May; 9(5):623-5. PubMed ID: 27151525
    [No Abstract]   [Full Text] [Related]  

  • 14. A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection.
    Tanimoto S; Rodriguez-Granillo G; Barlis P; de Winter S; Bruining N; Hamers R; Knappen M; Verheye S; Serruys PW; Regar E
    Catheter Cardiovasc Interv; 2008 Aug; 72(2):228-35. PubMed ID: 18324698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A framework for computational fluid dynamic analyses of patient-specific stented coronary arteries from optical coherence tomography images.
    Migliori S; Chiastra C; Bologna M; Montin E; Dubini G; Aurigemma C; Fedele R; Burzotta F; Mainardi L; Migliavacca F
    Med Eng Phys; 2017 Sep; 47():105-116. PubMed ID: 28711588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of optical frequency domain imaging for evaluation of coronary adventitial vasa vasorum formation after stent implantation in pigs and humans - a validation study - .
    Nishimiya K; Matsumoto Y; Uzuka H; Oyama K; Tanaka A; Taruya A; Ogata T; Hirano M; Shindo T; Hanawa K; Hasebe Y; Hao K; Tsuburaya R; Takahashi J; Miyata S; Ito K; Akasaka T; Shimokawa H
    Circ J; 2015; 79(6):1323-31. PubMed ID: 25843557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l'Infarto-VARiability] study).
    Fedele S; Biondi-Zoccai G; Kwiatkowski P; Di Vito L; Occhipinti M; Cremonesi A; Albertucci M; Materia L; Paoletti G; Prati F
    Am J Cardiol; 2012 Oct; 110(8):1106-12. PubMed ID: 22748353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heartbeat OCT and Motion-Free 3D In Vivo Coronary Artery Microscopy.
    Wang T; Pfeiffer T; Regar E; Wieser W; van Beusekom H; Lancee CT; Springeling G; Krabbendam-Peters I; van der Steen AF; Huber R; van Soest G
    JACC Cardiovasc Imaging; 2016 May; 9(5):622-3. PubMed ID: 27151524
    [No Abstract]   [Full Text] [Related]  

  • 19. Second-generation optical coherence tomography in clinical practice. High-speed data acquisition is highly reproducible in patients undergoing percutaneous coronary intervention.
    Gonzalo N; Tearney GJ; Serruys PW; van Soest G; Okamura T; García-García HM; Jan van Geuns R; van der Ent M; Ligthart J; Bouma BE; Regar E
    Rev Esp Cardiol; 2010 Aug; 63(8):893-903. PubMed ID: 20738934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs.
    Wang A; Eggermont J; Dekker N; de Koning PJ; Reiber JH; Dijkstra J
    Comput Med Imaging Graph; 2014 Mar; 38(2):113-22. PubMed ID: 24070672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.