BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25971972)

  • 1. Platymonas subcordiformis Channelrhodopsin-2 Function: I. THE PHOTOCHEMICAL REACTION CYCLE.
    Szundi I; Li H; Chen E; Bogomolni R; Spudich JL; Kliger DS
    J Biol Chem; 2015 Jul; 290(27):16573-84. PubMed ID: 25971972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platymonas subcordiformis Channelrhodopsin-2 (PsChR2) Function: II. RELATIONSHIP OF THE PHOTOCHEMICAL REACTION CYCLE TO CHANNEL CURRENTS.
    Szundi I; Bogomolni R; Kliger DS
    J Biol Chem; 2015 Jul; 290(27):16585-94. PubMed ID: 25971978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis.
    Govorunova EG; Sineshchekov OA; Li H; Janz R; Spudich JL
    J Biol Chem; 2013 Oct; 288(41):29911-22. PubMed ID: 23995841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.
    Kaufmann JCD; Krause BS; Grimm C; Ritter E; Hegemann P; Bartl FJ
    J Biol Chem; 2017 Aug; 292(34):14205-14216. PubMed ID: 28659342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic Channelrhodopsin from the Alga Platymonas subcordiformis as a Promising Optogenetic Tool.
    Idzhilova OS; Smirnova GR; Petrovskaya LE; Kolotova DA; Ostrovsky MA; Malyshev AY
    Biochemistry (Mosc); 2022 Nov; 87(11):1327-1334. PubMed ID: 36509722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel photocycle kinetic model of anion channelrhodopsin GtACR1 function.
    Szundi I; Kliger DS
    Biophys J; 2024 Jun; 123(12):1735-1750. PubMed ID: 38762755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.
    Ritter E; Stehfest K; Berndt A; Hegemann P; Bartl FJ
    J Biol Chem; 2008 Dec; 283(50):35033-41. PubMed ID: 18927082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoactivation of channelrhodopsin.
    Ernst OP; Murcia PAS; Daldrop P; Tsunoda SP; Kateriya S; Hegemann P
    J Biol Chem; 2008 Jan; 283(3):1637-1643. PubMed ID: 17993465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex Photochemistry within the Green-Absorbing Channelrhodopsin ReaChR.
    Krause BS; Grimm C; Kaufmann JCD; Schneider F; Sakmar TP; Bartl FJ; Hegemann P
    Biophys J; 2017 Mar; 112(6):1166-1175. PubMed ID: 28355544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the photochemical reaction cycle of proteorhodopsin.
    Váró G; Brown LS; Lakatos M; Lanyi JK
    Biophys J; 2003 Feb; 84(2 Pt 1):1202-7. PubMed ID: 12547799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreactions of the Histidine Kinase Rhodopsin Ot-HKR from the Marine Picoalga Ostreococcus tauri.
    Luck M; Velázquez Escobar F; Glass K; Sabotke MI; Hagedorn R; Corellou F; Siebert F; Hildebrandt P; Hegemann P
    Biochemistry; 2019 Apr; 58(14):1878-1891. PubMed ID: 30768260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps.
    Verhoefen MK; Bamann C; Blöcher R; Förster U; Bamberg E; Wachtveitl J
    Chemphyschem; 2010 Oct; 11(14):3113-22. PubMed ID: 20730849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a Natural Green Light Absorbing Chloride Conducting Channelrhodopsin from Proteomonas sulcata.
    Wietek J; Broser M; Krause BS; Hegemann P
    J Biol Chem; 2016 Feb; 291(8):4121-7. PubMed ID: 26740624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment.
    Bieszke JA; Spudich EN; Scott KL; Borkovich KA; Spudich JL
    Biochemistry; 1999 Oct; 38(43):14138-45. PubMed ID: 10571987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved rapid-scan Fourier transform infrared difference spectroscopy on a noncyclic photosystem: rhodopsin photointermediates from Lumi to Meta II.
    Lüdeke S; Lórenz Fonfría VA; Siebert F; Vogel R
    Biopolymers; 2006 Oct; 83(2):159-69. PubMed ID: 16721790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.
    Inaguma A; Tsukamoto H; Kato HE; Kimura T; Ishizuka T; Oishi S; Yawo H; Nureki O; Furutani Y
    J Biol Chem; 2015 May; 290(18):11623-34. PubMed ID: 25796616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption spectra and photochemical reactions in a unique photoactive protein, middle rhodopsin MR.
    Inoue K; Reissig L; Sakai M; Kobayashi S; Homma M; Fujii M; Kandori H; Sudo Y
    J Phys Chem B; 2012 May; 116(20):5888-99. PubMed ID: 22545951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-gating conformational changes in the ChETA variant of channelrhodopsin-2 monitored by nanosecond IR spectroscopy.
    Lórenz-Fonfría VA; Schultz BJ; Resler T; Schlesinger R; Bamann C; Bamberg E; Heberle J
    J Am Chem Soc; 2015 Feb; 137(5):1850-61. PubMed ID: 25584873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride.
    Govorunova EG; Spudich EN; Lane CE; Sineshchekov OA; Spudich JL
    mBio; 2011; 2(3):e00115-11. PubMed ID: 21693637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro Activity of a Purified Natural Anion Channelrhodopsin.
    Li H; Sineshchekov OA; Wu G; Spudich JL
    J Biol Chem; 2016 Dec; 291(49):25319-25325. PubMed ID: 27789708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.