These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25971973)

  • 1. Ubiquitous Autofragmentation of Fluorescent Proteins Creates Abundant Defective Ribosomal Products (DRiPs) for Immunosurveillance.
    Wei J; Gibbs JS; Hickman HD; Cush SS; Bennink JR; Yewdell JW
    J Biol Chem; 2015 Jun; 290(26):16431-9. PubMed ID: 25971973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis.
    Wood TI; Barondeau DP; Hitomi C; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Dec; 44(49):16211-20. PubMed ID: 16331981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2.
    Pakhomov AA; Martynov VI
    Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA polymerase II inhibitors dissociate antigenic peptide generation from normal viral protein synthesis: a role for nuclear translation in defective ribosomal product synthesis?
    Dolan BP; Knowlton JJ; David A; Bennink JR; Yewdell JW
    J Immunol; 2010 Dec; 185(11):6728-33. PubMed ID: 21048111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traditional GFP-type cyclization and unexpected fragmentation site in a purple chromoprotein from Anemonia sulcata, asFP595.
    Zagranichny VE; Rudenko NV; Gorokhovatsky AY; Zakharov MV; Balashova TA; Arseniev AS
    Biochemistry; 2004 Oct; 43(42):13598-603. PubMed ID: 15491166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variations on the GFP chromophore: A polypeptide fragmentation within the chromophore revealed in the 2.1-A crystal structure of a nonfluorescent chromoprotein from Anemonia sulcata.
    Wilmann PG; Petersen J; Devenish RJ; Prescott M; Rossjohn J
    J Biol Chem; 2005 Jan; 280(4):2401-4. PubMed ID: 15542608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation.
    Rosenow MA; Huffman HA; Phail ME; Wachter RM
    Biochemistry; 2004 Apr; 43(15):4464-72. PubMed ID: 15078092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. zFP538, a yellow fluorescent protein from coral, belongs to the DsRed subfamily of GFP-like proteins but possesses the unexpected site of fragmentation.
    Zagranichny VE; Rudenko NV; Gorokhovatsky AY; Zakharov MV; Shenkarev ZO; Balashova TA; Arseniev AS
    Biochemistry; 2004 Apr; 43(16):4764-72. PubMed ID: 15096045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct pathways generate peptides from defective ribosomal products for CD8+ T cell immunosurveillance.
    Dolan BP; Li L; Veltri CA; Ireland CM; Bennink JR; Yewdell JW
    J Immunol; 2011 Feb; 186(4):2065-72. PubMed ID: 21228349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining Viral Defective Ribosomal Products: Standard and Alternative Translation Initiation Events Generate a Common Peptide from Influenza A Virus M2 and M1 mRNAs.
    Yang N; Gibbs JS; Hickman HD; Reynoso GV; Ghosh AK; Bennink JR; Yewdell JW
    J Immunol; 2016 May; 196(9):3608-17. PubMed ID: 27016602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of poly(ADP-ribose) glycohydrolase nucleocytoplasmic shuttling characteristics upon cleavage by apoptotic proteases.
    Bonicalzi ME; Vodenicharov M; Coulombe M; Gagné JP; Poirier GG
    Biol Cell; 2003 Dec; 95(9):635-44. PubMed ID: 14720466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative cyclization in GFP-like proteins family. The formation and structure of the chromophore of a purple chromoprotein from Anemonia sulcata.
    Martynov VI; Savitsky AP; Martynova NY; Savitsky PA; Lukyanov KA; Lukyanov SA
    J Biol Chem; 2001 Jun; 276(24):21012-6. PubMed ID: 11259412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation.
    Tubbs JL; Tainer JA; Getzoff ED
    Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus.
    Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-localization of HIV-1 Nef with the AP-2 adaptor protein complex correlates with Nef-induced CD4 down-regulation.
    Greenberg ME; Bronson S; Lock M; Neumann M; Pavlakis GN; Skowronski J
    EMBO J; 1997 Dec; 16(23):6964-76. PubMed ID: 9384576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-fluorescent mutant of green fluorescent protein sheds light on the mechanism of chromophore formation.
    Bartkiewicz M; Kazazić S; Krasowska J; Clark PL; Wielgus-Kutrowska B; Bzowska A
    FEBS Lett; 2018 May; 592(9):1516-1523. PubMed ID: 29637558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tight linkage between translation and MHC class I peptide ligand generation implies specialized antigen processing for defective ribosomal products.
    Qian SB; Reits E; Neefjes J; Deslich JM; Bennink JR; Yewdell JW
    J Immunol; 2006 Jul; 177(1):227-33. PubMed ID: 16785518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding GFP chromophore biosynthesis: controlling backbone cyclization and modifying post-translational chemistry.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Feb; 44(6):1960-70. PubMed ID: 15697221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel uses of fluorescent proteins.
    Mishin AS; Belousov VV; Solntsev KM; Lukyanov KA
    Curr Opin Chem Biol; 2015 Aug; 27():1-9. PubMed ID: 26022943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins.
    Rothbauer U; Zolghadr K; Muyldermans S; Schepers A; Cardoso MC; Leonhardt H
    Mol Cell Proteomics; 2008 Feb; 7(2):282-9. PubMed ID: 17951627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.