These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 25972774)

  • 1. Single-use thermoplastic microfluidic burst valves enabling on-chip reagent storage.
    Rahmanian OD; DeVoe DL
    Microfluid Nanofluidics; 2015 May; 18(5-6):1045-1053. PubMed ID: 25972774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-pressure on-chip mechanical valves for thermoplastic microfluidic devices.
    Chen CF; Liu J; Chang CC; DeVoe DL
    Lab Chip; 2009 Dec; 9(24):3511-6. PubMed ID: 20024030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screw-actuated displacement micropumps for thermoplastic microfluidics.
    Han JY; Rahmanian OD; Kendall EL; Fleming N; DeVoe DL
    Lab Chip; 2016 Oct; 16(20):3940-3946. PubMed ID: 27713994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple check valve for microfluidic point of care diagnostics.
    Ball CS; Renzi RF; Priye A; Meagher RJ
    Lab Chip; 2016 Nov; 16(22):4436-4444. PubMed ID: 27761525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-actuated monolithic acrylic microfluidic valves and pumps.
    Guevara-Pantoja PE; Jiménez-Valdés RJ; García-Cordero JL; Caballero-Robledo GA
    Lab Chip; 2018 Feb; 18(4):662-669. PubMed ID: 29367991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards plug and play filling of microfluidic devices by utilizing networks of capillary stop valves.
    Hagmeyer B; Zechnall F; Stelzle M
    Biomicrofluidics; 2014 Sep; 8(5):056501. PubMed ID: 25332747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic-adhesive based valves for microfluidic devices used in low-resource settings.
    Harper JC; Andrews JM; Ben C; Hunt AC; Murton JK; Carson BD; Bachand GD; Lovchik JA; Arndt WD; Finley MR; Edwards TL
    Lab Chip; 2016 Oct; 16(21):4142-4151. PubMed ID: 27713988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inexpensive, rapid fabrication of polymer-film microfluidic autoregulatory valve for disposable microfluidics.
    Zhang X; Zhu Z; Ni Z; Xiang N; Yi H
    Biomed Microdevices; 2017 Jun; 19(2):21. PubMed ID: 28367599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet Microfluidics in Thermoplastics: Device Fabrication, Droplet Generation, and Content Manipulation using Integrated Electric and Magnetic Fields.
    Sahore V; Doonan SR; Bailey RC
    Anal Methods; 2018 Sep; 10(35):4264-4274. PubMed ID: 30886651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roll-to-Roll Manufacturing of Integrated Immunodetection Sensors.
    Liedert C; Rannaste L; Kokkonen A; Huttunen OH; Liedert R; Hiltunen J; Hakalahti L
    ACS Sens; 2020 Jul; 5(7):2010-2017. PubMed ID: 32469200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pen microfluidics: rapid desktop manufacturing of sealed thermoplastic microchannels.
    Rahmanian O; DeVoe DL
    Lab Chip; 2013 Mar; 13(6):1102-8. PubMed ID: 23344819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices.
    Roy E; Galas JC; Veres T
    Lab Chip; 2011 Sep; 11(18):3193-6. PubMed ID: 21796278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use.
    Willis PA; Hunt BD; White VE; Lee MC; Ikeda M; Bae S; Pelletier MJ; Grunthaner FJ
    Lab Chip; 2007 Nov; 7(11):1469-74. PubMed ID: 17960273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid paper and microfluidic chip with electrowetting valves and colorimetric detection.
    He F; Grimes J; Alcaine SD; Nugen SR
    Analyst; 2014 Jun; 139(12):3002-8. PubMed ID: 24719901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomolecule storage on non-modified thermoplastic microfluidic chip by ink-jet printing of ionogels.
    Tijero M; Díez-Ahedo R; Benito-Lopez F; Basabe-Desmonts L; Castro-López V; Valero A
    Biomicrofluidics; 2015 Jul; 9(4):044124. PubMed ID: 26339323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-Scale Integration of All-Glass Valves on a Microfluidic Device.
    Yalikun Y; Tanaka Y
    Micromachines (Basel); 2016 May; 7(5):. PubMed ID: 30404259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sliding walls: a new paradigm for fluidic actuation and protocol implementation in microfluidics.
    Venzac B; Liu Y; Ferrante I; Vargas P; Yamada A; Courson R; Verhulsel M; Malaquin L; Viovy JL; Descroix S
    Microsyst Nanoeng; 2020; 6():18. PubMed ID: 34567633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From cellular lysis to microarray detection, an integrated thermoplastic elastomer (TPE) point of care Lab on a Disc.
    Roy E; Stewart G; Mounier M; Malic L; Peytavi R; Clime L; Madou M; Bossinot M; Bergeron MG; Veres T
    Lab Chip; 2015 Jan; 15(2):406-16. PubMed ID: 25385141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Millifluidic valves and pumps made of tape and plastic.
    Amador-Hernandez JU; Guevara-Pantoja PE; Cedillo-Alcantar DF; Caballero-Robledo GA; Garcia-Cordero JL
    Lab Chip; 2023 Oct; 23(20):4579-4591. PubMed ID: 37772361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.