These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 25973717)

  • 1. Simulation Study of Hydrophobically Modified Chitosan as an Oil Dispersant Additive.
    Benner SW; John VT; Hall CK
    J Phys Chem B; 2015 Jun; 119(23):6979-90. PubMed ID: 25973717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobically modified chitosan biopolymer connects halloysite nanotubes at the oil-water interface as complementary pair for stabilizing oil droplets.
    Owoseni O; Su Y; Raghavan S; Bose A; John VT
    J Colloid Interface Sci; 2022 Aug; 620():135-143. PubMed ID: 35421750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attachment of a hydrophobically modified biopolymer at the oil-water interface in the treatment of oil spills.
    Venkataraman P; Tang J; Frenkel E; McPherson GL; He J; Raghavan SR; Kolesnichenko V; Bose A; John VT
    ACS Appl Mater Interfaces; 2013 May; 5(9):3572-80. PubMed ID: 23527784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multichain aggregates in dilute solutions of associating polyelectrolyte keeping a constant size at the increase in the chain length of individual macromolecules.
    Korchagina EV; Philippova OE
    Biomacromolecules; 2010 Dec; 11(12):3457-66. PubMed ID: 21105706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing structure-nanoaggregation relations of polyaromatic surfactants: a molecular dynamics simulation and dynamic light scattering study.
    Teklebrhan RB; Ge L; Bhattacharjee S; Xu Z; Sjöblom J
    J Phys Chem B; 2012 May; 116(20):5907-18. PubMed ID: 22512276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cells capture and antimicrobial effect of hydrophobically modified chitosan coating on Escherichia coli.
    Vo DT; Lee CK
    Carbohydr Polym; 2017 May; 164():109-117. PubMed ID: 28325306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial sponge prepared by hydrophobically modified chitosan for bacteria removal.
    Vo DT; Lee CK
    Carbohydr Polym; 2018 May; 187():1-7. PubMed ID: 29486833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Well-packed chains and aggregates in the emission mechanism of conjugated polymers.
    Peng KY; Chen SA; Fann WS; Chen SH; Su AC
    J Phys Chem B; 2005 May; 109(19):9368-73. PubMed ID: 16852122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of oil detachment from hybrid hydrophobic and hydrophilic surface in aqueous solution.
    Zhang P; Xu Z; Liu Q; Yuan S
    J Chem Phys; 2014 Apr; 140(16):164702. PubMed ID: 24784294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of networks in mixtures of hydrophobically modified telechelic multiarm polymers and oil in water microemulsions.
    de Molina PM; Herfurth C; Laschewsky A; Gradzielski M
    Langmuir; 2012 Nov; 28(45):15994-6006. PubMed ID: 23075139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of chain architecture on the size, shape, and intrinsic viscosity of chains in polymer solutions: a molecular simulation study.
    Khabaz F; Khare R
    J Chem Phys; 2014 Dec; 141(21):214904. PubMed ID: 25481166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple, reversible emulsion system switched by pH on the basis of chitosan without any hydrophobic modification.
    Liu H; Wang C; Zou S; Wei Z; Tong Z
    Langmuir; 2012 Jul; 28(30):11017-24. PubMed ID: 22762435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hydrophobic substituents and salt on core-shell aggregates of hydrophobically modified chitosan: light scattering study.
    Korchagina EV; Philippova OE
    Langmuir; 2012 May; 28(20):7880-8. PubMed ID: 22548489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linolenic acid-modified chitosan for formation of self-assembled nanoparticles.
    Liu CG; Desai KG; Chen XG; Park HJ
    J Agric Food Chem; 2005 Jan; 53(2):437-41. PubMed ID: 15656685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase behavior and structure formation in linear multiblock copolymer solutions by Monte Carlo simulation.
    Gindy ME; Prud'homme RK; Panagiotopoulos AZ
    J Chem Phys; 2008 Apr; 128(16):164906. PubMed ID: 18447499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Do Amphiphilic Biopolymers Gel Blood? An Investigation Using Optical Microscopy.
    MacIntire IC; Dowling MB; Raghavan SR
    Langmuir; 2020 Jul; 36(29):8357-8366. PubMed ID: 32678610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size and persistence length of molecular bottle-brushes by Monte Carlo simulations.
    Elli S; Ganazzoli F; Timoshenko EG; Kuznetsov YA; Connolly R
    J Chem Phys; 2004 Apr; 120(13):6257-67. PubMed ID: 15267513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of controllable aggregation morphology of ABA amphiphilic triblock copolymer in dilute solution by changing the solvent property.
    Du H; Zhu J; Jiang W
    J Phys Chem B; 2007 Mar; 111(8):1938-45. PubMed ID: 17274648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.
    Nair N; Wentzel N; Jayaraman A
    J Chem Phys; 2011 May; 134(19):194906. PubMed ID: 21599087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chain length on the aggregation of model polyglutamine peptides: molecular dynamics simulations.
    Marchut AJ; Hall CK
    Proteins; 2007 Jan; 66(1):96-109. PubMed ID: 17068817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.