These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 25973855)
1. A single exposure of sediment sulphate-reducing bacteria to oxytetracycline concentrations relevant to aquaculture enduringly disturbed their activity, abundance and community structure. Fernández ML; Granados-Chinchilla F; Rodríguez C J Appl Microbiol; 2015 Aug; 119(2):354-64. PubMed ID: 25973855 [TBL] [Abstract][Full Text] [Related]
2. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
3. Comparison of sulphate-reducing bacterial communities in Japanese fish farm sediments with different levels of organic enrichment. Kondo R; Mori Y; Sakami T Microbes Environ; 2012; 27(2):193-9. PubMed ID: 22791053 [TBL] [Abstract][Full Text] [Related]
4. Risk assessment of oxytetracycline in water phase to major sediment bacterial community: a water-sediment microcosm study. Suga N; Ogo M; Suzuki S Environ Toxicol Pharmacol; 2013 Jul; 36(1):142-8. PubMed ID: 23619519 [TBL] [Abstract][Full Text] [Related]
5. Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Sahm K; MacGregor BJ; Jørgensen BB; Stahl DA Environ Microbiol; 1999 Feb; 1(1):65-74. PubMed ID: 11207719 [TBL] [Abstract][Full Text] [Related]
6. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Foti M; Sorokin DY; Lomans B; Mussman M; Zacharova EE; Pimenov NV; Kuenen JG; Muyzer G Appl Environ Microbiol; 2007 Apr; 73(7):2093-100. PubMed ID: 17308191 [TBL] [Abstract][Full Text] [Related]
7. Distribution and diversity of bacterial communities and sulphate-reducing bacteria in a paddy soil irrigated with acid mine drainage. Wang H; Guo CL; Yang CF; Lu GN; Chen MQ; Dang Z J Appl Microbiol; 2016 Jul; 121(1):196-206. PubMed ID: 27005987 [TBL] [Abstract][Full Text] [Related]
8. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Robador A; Brüchert V; Jørgensen BB Environ Microbiol; 2009 Jul; 11(7):1692-703. PubMed ID: 19292778 [TBL] [Abstract][Full Text] [Related]
9. Contrasting relationships between biogeochemistry and prokaryotic diversity depth profiles along an estuarine sediment gradient. O'Sullivan LA; Sass AM; Webster G; Fry JC; Parkes RJ; Weightman AJ FEMS Microbiol Ecol; 2013 Jul; 85(1):143-57. PubMed ID: 23480711 [TBL] [Abstract][Full Text] [Related]
10. Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Seyfried EE; Newton RJ; Rubert KF; Pedersen JA; McMahon KD Microb Ecol; 2010 May; 59(4):799-807. PubMed ID: 20217406 [TBL] [Abstract][Full Text] [Related]
11. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Leloup J; Fossing H; Kohls K; Holmkvist L; Borowski C; Jørgensen BB Environ Microbiol; 2009 May; 11(5):1278-91. PubMed ID: 19220398 [TBL] [Abstract][Full Text] [Related]
12. Tetracycline and 4-epitetracycline modified the in vitro catabolic activity and structure of a sediment microbial community from a tropical tilapia farm idiosyncratically. Granados-Chinchilla F; Arias-Andrés M; Rodríguez C J Environ Sci Health B; 2013; 48(4):291-301. PubMed ID: 23374048 [TBL] [Abstract][Full Text] [Related]
13. Effect of magnesium peroxide biostimulation of fish feed-loaded marine sediments on changes in the bacterial community. Santander-De Leon SM; Okunishi S; Kihira M; Nakano M; Nuñal SN; Hidaka M; Yoshikawa T; Maeda H Biocontrol Sci; 2013; 18(1):41-51. PubMed ID: 23538850 [TBL] [Abstract][Full Text] [Related]
14. The microbial community structure of different permeable sandy sediments characterized by the investigation of bacterial fatty acids and fluorescence in situ hybridization. Bühring SI; Elvert M; Witte U Environ Microbiol; 2005 Feb; 7(2):281-93. PubMed ID: 15658995 [TBL] [Abstract][Full Text] [Related]
15. Descriptive analyses of bacterial communities in marine sediment microcosms spiked with fish wastes, emamectin benzoate, and oxytetracycline. Johnson LA; Dufour SC; Smith DDN; Manning AJ; Ahmed B; Binette S; Hamoutene D Ecotoxicol Environ Saf; 2023 Dec; 268():115683. PubMed ID: 37976931 [TBL] [Abstract][Full Text] [Related]
17. Measurement of oxytetracycline and emamectin benzoate in freshwater sediments downstream of land based aquaculture facilities in the Atlantic Region of Canada. Lalonde BA; Ernst W; Greenwood L Bull Environ Contam Toxicol; 2012 Sep; 89(3):547-50. PubMed ID: 22801927 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic microbiota: spatial-temporal changes in the sediment of a tropical coastal lagoon with ephemeral inlet in the Gulf of Mexico. Torres-Alvarado MR; Calva-Benítez LG; Álvarez-Hernández S; Trejo-Aguilar G Rev Biol Trop; 2016 Dec; 64(4):1759-70. PubMed ID: 29465951 [TBL] [Abstract][Full Text] [Related]
19. Archaeal community compositions in tilapia pond systems and their influencing factors. Fan L; Barry K; Shi L; Song C; Meng S; Qiu L; Hu G; Zheng Y; Li F; Chen J; Xu P World J Microbiol Biotechnol; 2018 Feb; 34(3):43. PubMed ID: 29492679 [TBL] [Abstract][Full Text] [Related]
20. Sulphate-reducing bacteria (SRB) in the Yangtze Estuary sediments: Abundance, distribution and implications for the bioavailibility of metals. Niu ZS; Pan H; Guo XP; Lu DP; Feng JN; Chen YR; Tou FY; Liu M; Yang Y Sci Total Environ; 2018 Sep; 634():296-304. PubMed ID: 29627553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]