These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 25974096)
1. Inexpensive, rapid prototyping of microfluidic devices using overhead transparencies and a laser print, cut and laminate fabrication method. Thompson BL; Ouyang Y; Duarte GR; Carrilho E; Krauss ST; Landers JP Nat Protoc; 2015 Jun; 10(6):875-86. PubMed ID: 25974096 [TBL] [Abstract][Full Text] [Related]
2. Multilevel fluidic flow control in a rotationally-driven polyester film microdevice created using laser print, cut and laminate. Ouyang Y; Li J; Phaneuf C; Riehl PS; Forest C; Begley M; Haverstick DM; Landers JP Lab Chip; 2016 Jan; 16(2):377-87. PubMed ID: 26675027 [TBL] [Abstract][Full Text] [Related]
3. Rapid patterning of 'tunable' hydrophobic valves on disposable microchips by laser printer lithography. Ouyang Y; Wang S; Li J; Riehl PS; Begley M; Landers JP Lab Chip; 2013 May; 13(9):1762-71. PubMed ID: 23478812 [TBL] [Abstract][Full Text] [Related]
4. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process. Liu AL; He FY; Wang K; Zhou T; Lu Y; Xia XH Lab Chip; 2005 Sep; 5(9):974-8. PubMed ID: 16100582 [TBL] [Abstract][Full Text] [Related]
8. Paper and toner three-dimensional fluidic devices: programming fluid flow to improve point-of-care diagnostics. Schilling KM; Jauregui D; Martinez AW Lab Chip; 2013 Feb; 13(4):628-31. PubMed ID: 23282766 [TBL] [Abstract][Full Text] [Related]
9. Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter. Yuen PK; Goral VN Lab Chip; 2010 Feb; 10(3):384-7. PubMed ID: 20091012 [TBL] [Abstract][Full Text] [Related]
10. A centrifugal microfluidic device with integrated gold leaf electrodes for the electrophoretic separation of DNA. Thompson BL; Birch C; Nelson DA; Li J; DuVall JA; Le Roux D; Tsuei AC; Mills DL; Root BE; Landers JP Lab Chip; 2016 Nov; 16(23):4569-4580. PubMed ID: 27766331 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic devices obtained by thermal toner transferring on glass substrate. do Lago CL; Neves CA; Pereira de Jesus D; da Silva HD; Brito-Neto JG; Fracassi da Silva JA Electrophoresis; 2004 Nov; 25(21-22):3825-31. PubMed ID: 15565679 [TBL] [Abstract][Full Text] [Related]
15. Functional toner for office laser printer and its application for printing of paper-based superwettable patterns and devices. Liu Y; Liu X; Chen J; Zhang Z; Feng L Sci Rep; 2023 Aug; 13(1):12592. PubMed ID: 37537193 [TBL] [Abstract][Full Text] [Related]
16. Characterization of microchip electrophoresis devices fabricated by direct-printing process with colored toner. Gabriel EF; do Lago CL; Gobbi ÅL; Carrilho E; Coltro WK Electrophoresis; 2013 Aug; 34(15):2169-76. PubMed ID: 23712918 [TBL] [Abstract][Full Text] [Related]
17. Rapid and inexpensive fabrication of polymeric microfluidic devices via toner transfer masking. Easley CJ; Benninger RK; Shaver JH; Steven Head W; Piston DW Lab Chip; 2009 Apr; 9(8):1119-27. PubMed ID: 19350094 [TBL] [Abstract][Full Text] [Related]
18. Low cost lab-on-a-chip prototyping with a consumer grade 3D printer. Comina G; Suska A; Filippini D Lab Chip; 2014 Aug; 14(16):2978-82. PubMed ID: 24931176 [TBL] [Abstract][Full Text] [Related]
19. Desktop aligner for fabrication of multilayer microfluidic devices. Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409 [TBL] [Abstract][Full Text] [Related]