These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25974100)

  • 61. Exploring the sequence-function relationship in transcriptional regulation by the lac O1 operator.
    Maity TS; Jha RK; Strauss CE; Dunbar J
    FEBS J; 2012 Jul; 279(14):2534-43. PubMed ID: 22594825
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Broadening the signal specificity of prokaryotic promoters by modifying cis-regulatory elements associated with a single transcription factor.
    Silva-Rocha R; de Lorenzo V
    Mol Biosyst; 2012 Jul; 8(7):1950-7. PubMed ID: 22588473
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular modeling of Bt Cry1Ac (DI-DII)-ASAL (Allium sativum lectin)-fusion protein and its interaction with aminopeptidase N (APN) receptor of Manduca sexta.
    Tajne S; Sanam R; Gundla R; Gandhi NS; Mancera RL; Boddupally D; Vudem DR; Khareedu VR
    J Mol Graph Model; 2012 Mar; 33():61-76. PubMed ID: 22182469
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Programmable gene regulation for metabolic engineering using decoy transcription factor binding sites.
    Wang T; Tague N; Whelan SA; Dunlop MJ
    Nucleic Acids Res; 2021 Jan; 49(2):1163-1172. PubMed ID: 33367820
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tuning ligand affinity, specificity, and folding stability of an engineered lipocalin variant -- a so-called 'anticalin' -- using a molecular random approach.
    Schlehuber S; Skerra A
    Biophys Chem; 2002 May; 96(2-3):213-28. PubMed ID: 12034442
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecular engineering of the salicylate-inducible transcription factor Sal7AR for orthogonal and high gene expression in Escherichia coli.
    Miyazaki K
    PLoS One; 2018; 13(4):e0194090. PubMed ID: 29641575
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Directed evolution of the transcription factor XylS for development of improved expression systems.
    Vee Aune TE; Bakke I; Drabløs F; Lale R; Brautaset T; Valla S
    Microb Biotechnol; 2010 Jan; 3(1):38-47. PubMed ID: 21255304
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Design of generic biosensors based on green fluorescent proteins with allosteric sites by directed evolution.
    Doi N; Yanagawa H
    FEBS Lett; 1999 Jun; 453(3):305-7. PubMed ID: 10405165
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Creating novel proteins by combining design and selection.
    Grove TZ; Hands M; Regan L
    Protein Eng Des Sel; 2010 Jun; 23(6):449-55. PubMed ID: 20304973
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Spontaneous mutations affecting transcriptional regulation by protocatechuate in Acinetobacter.
    D'Argenio DA; Segura A; Bünz PV; Ornston LN
    FEMS Microbiol Lett; 2001 Jul; 201(1):15-9. PubMed ID: 11445161
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The Acinetobacter sp. chnB promoter together with its cognate positive regulator ChnR is an attractive new candidate for metabolic engineering applications in bacteria.
    Steigedal M; Valla S
    Metab Eng; 2008 Mar; 10(2):121-9. PubMed ID: 17950643
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mechanism of ligand recognition by BmrR, the multidrug-responding transcriptional regulator: mutational analysis of the ligand-binding site.
    Vázquez-Laslop N; Markham PN; Neyfakh AA
    Biochemistry; 1999 Dec; 38(51):16925-31. PubMed ID: 10606527
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Rosetta-Enabled Structural Prediction of Permissive Loop Insertion Sites in Proteins.
    Plaks JG; Brewer JA; Jacobsen NK; McKenna M; Uzarski JR; Lawton TJ; Filocamo SF; Kaar JL
    Biochemistry; 2020 Oct; 59(41):3993-4002. PubMed ID: 32970423
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Efficient Screening and Optimization of Membrane Protein Production in Escherichia coli.
    Marino J; Holzhüter K; Kuhn B; Geertsma ER
    Methods Enzymol; 2017; 594():139-164. PubMed ID: 28779839
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Relevance of nucleotides of the PcaU binding site from Acinetobacter baylyi.
    Jerg B; Gerischer U
    Microbiology (Reading); 2008 Mar; 154(Pt 3):756-766. PubMed ID: 18310022
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Engineering Transcriptional Regulator Effector Specificity Using Computational Design and In Vitro Rapid Prototyping: Developing a Vanillin Sensor.
    de los Santos EL; Meyerowitz JT; Mayo SL; Murray RM
    ACS Synth Biol; 2016 Apr; 5(4):287-95. PubMed ID: 26262913
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Development of Colorimetric-Based Whole-Cell Biosensor for Organophosphorus Compounds by Engineering Transcription Regulator DmpR.
    Chong H; Ching CB
    ACS Synth Biol; 2016 Nov; 5(11):1290-1298. PubMed ID: 27346389
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Gradient of Sitewise Diversity Promotes Evolutionary Fitness for Binder Discovery in a Three-Helix Bundle Protein Scaffold.
    Woldring DR; Holec PV; Stern LA; Du Y; Hackel BJ
    Biochemistry; 2017 Mar; 56(11):1656-1671. PubMed ID: 28248518
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Computational Design of Ligand Binding Proteins.
    Tinberg CE; Khare SD
    Methods Mol Biol; 2017; 1529():363-373. PubMed ID: 27914062
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Real-time RNA profiling within a single bacterium.
    Le TT; Harlepp S; Guet CC; Dittmar K; Emonet T; Pan T; Cluzel P
    Proc Natl Acad Sci U S A; 2005 Jun; 102(26):9160-4. PubMed ID: 15967986
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.