These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 25974102)
1. The potential role of DNA methylation in the pathogenesis of abdominal aortic aneurysm. Toghill BJ; Saratzis A; Harrison SC; Verissimo AR; Mallon EB; Bown MJ Atherosclerosis; 2015 Jul; 241(1):121-9. PubMed ID: 25974102 [TBL] [Abstract][Full Text] [Related]
3. Genetic and epigenetic mechanisms and their possible role in abdominal aortic aneurysm. Krishna SM; Dear AE; Norman PE; Golledge J Atherosclerosis; 2010 Sep; 212(1):16-29. PubMed ID: 20347091 [TBL] [Abstract][Full Text] [Related]
4. Abnormal Epigenetic Modifications in Peripheral T Cells from Patients with Abdominal Aortic Aneurysm Are Correlated with Disease Development. Jiang H; Xia Q; Xin S; Lun Y; Song J; Tang D; Liu X; Ren J; Duan Z; Zhang J J Vasc Res; 2015; 52(6):404-13. PubMed ID: 27194055 [TBL] [Abstract][Full Text] [Related]
5. Modulation of Kinin B2 Receptor Signaling Controls Aortic Dilatation and Rupture in the Angiotensin II-Infused Apolipoprotein E-Deficient Mouse. Moran CS; Rush CM; Dougan T; Jose RJ; Biros E; Norman PE; Gera L; Golledge J Arterioscler Thromb Vasc Biol; 2016 May; 36(5):898-907. PubMed ID: 26966276 [TBL] [Abstract][Full Text] [Related]
6. Tunica-Specific Transcriptome of Abdominal Aortic Aneurysm and the Effect of Intraluminal Thrombus, Smoking, and Diameter Growth Rate. Lindquist Liljeqvist M; Hultgren R; Bergman O; Villard C; Kronqvist M; Eriksson P; Roy J Arterioscler Thromb Vasc Biol; 2020 Nov; 40(11):2700-2713. PubMed ID: 32907367 [TBL] [Abstract][Full Text] [Related]
7. Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways. Nakao T; Horie T; Baba O; Nishiga M; Nishino T; Izuhara M; Kuwabara Y; Nishi H; Usami S; Nakazeki F; Ide Y; Koyama S; Kimura M; Sowa N; Ohno S; Aoki H; Hasegawa K; Sakamoto K; Minatoya K; Kimura T; Ono K Arterioscler Thromb Vasc Biol; 2017 Nov; 37(11):2161-2170. PubMed ID: 28882868 [TBL] [Abstract][Full Text] [Related]
8. The potential role of DNA methylation in abdominal aortic aneurysms. Ryer EJ; Ronning KE; Erdman R; Schworer CM; Elmore JR; Peeler TC; Nevius CD; Lillvis JH; Garvin RP; Franklin DP; Kuivaniemi H; Tromp G Int J Mol Sci; 2015 May; 16(5):11259-75. PubMed ID: 25993294 [TBL] [Abstract][Full Text] [Related]
9. Potential Medication Treatment According to Pathological Mechanisms in Abdominal Aortic Aneurysm. Zhang SL; Du X; Chen YQ; Tan YS; Liu L J Cardiovasc Pharmacol; 2018 Jan; 71(1):46-57. PubMed ID: 28953105 [TBL] [Abstract][Full Text] [Related]
10. Genetic and epigenetic regulation of abdominal aortic aneurysms. Mangum KD; Farber MA Clin Genet; 2020 Jun; 97(6):815-826. PubMed ID: 31957007 [TBL] [Abstract][Full Text] [Related]
11. The potential role of homocysteine mediated DNA methylation and associated epigenetic changes in abdominal aortic aneurysm formation. Krishna SM; Dear A; Craig JM; Norman PE; Golledge J Atherosclerosis; 2013 Jun; 228(2):295-305. PubMed ID: 23497786 [TBL] [Abstract][Full Text] [Related]
12. The Role of Epigenetic Modifications in Abdominal Aortic Aneurysm Pathogenesis. Mangum K; Gallagher K; Davis FM Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204673 [TBL] [Abstract][Full Text] [Related]
13. Epigenetic regulation of regulatory T cells in patients with abdominal aortic aneurysm. Xia Q; Zhang J; Han Y; Zhang X; Jiang H; Lun Y; Wu X; Gang Q; Liu Z; Böckler D; Duan Z; Xin S FEBS Open Bio; 2019 Jun; 9(6):1137-1143. PubMed ID: 31001930 [TBL] [Abstract][Full Text] [Related]
14. Down-regulation of Fibulin-5 is associated with aortic dilation: role of inflammation and epigenetics. Orriols M; Varona S; Martí-Pàmies I; Galán M; Guadall A; Escudero JR; Martín-Ventura JL; Camacho M; Vila L; Martínez-González J; Rodríguez C Cardiovasc Res; 2016 Jun; 110(3):431-42. PubMed ID: 27089918 [TBL] [Abstract][Full Text] [Related]