BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 25974168)

  • 1. The dynamic deformation of a layered viscoelastic medium under surface excitation.
    Aglyamov SR; Wang S; Karpiouk AB; Li J; Twa M; Emelianov SY; Larin KV
    Phys Med Biol; 2015 Jun; 60(11):4295-312. PubMed ID: 25974168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion of a solid sphere in a viscoelastic medium in response to applied acoustic radiation force: Theoretical analysis and experimental verification.
    Aglyamov SR; Karpiouk AB; Ilinskii YA; Zabolotskaya EA; Emelianov SY
    J Acoust Soc Am; 2007 Oct; 122(4):1927-36. PubMed ID: 17902829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative viscoelastic parameters measured by harmonic motion imaging.
    Vappou J; Maleke C; Konofagou EE
    Phys Med Biol; 2009 Jun; 54(11):3579-94. PubMed ID: 19454785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of mechanical properties of a viscoelastic medium using a laser-induced microbubble interrogated by an acoustic radiation force.
    Yoon S; Aglyamov SR; Karpiouk AB; Kim S; Emelianov SY
    J Acoust Soc Am; 2011 Oct; 130(4):2241-8. PubMed ID: 21973379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of novel imaging probe for optical/acoustic radiation imaging (OARI).
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2013 Nov; 40(11):111910. PubMed ID: 24320443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of viscosity on the shear strain remotely induced by focused ultrasound in viscoelastic media.
    Barannik EA; Girnyk SA; Tovstiak VV; Marusenko AI; Volokhov VA; Sarvazyan AP; Emelianov SY
    J Acoust Soc Am; 2004 May; 115(5 Pt 1):2358-64. PubMed ID: 15139649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A solution to diffraction biases in sonoelasticity: the acoustic impulse technique.
    Catheline S; Wu F; Fink M
    J Acoust Soc Am; 1999 May; 105(5):2941-50. PubMed ID: 10335643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility study of using the dispersion of surface acoustic wave impulse for viscoelasticity characterization in tissue mimicking phantoms.
    Zhou K; Li C; Chen S; Nabi G; Huang Z
    J Biophotonics; 2019 Jan; 12(1):e201800177. PubMed ID: 30073776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.
    Erpelding TN; Hollman KW; O'Donnell M
    Ultrasound Med Biol; 2007 Feb; 33(2):263-9. PubMed ID: 17306697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force.
    Ilinskii YA; Meegan GD; Zabolotskaya EA; Emelianov SY
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):2338-46. PubMed ID: 15898674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic characterization of soft tissue from dynamic finite element models.
    Eskandari H; Salcudean SE; Rohling R; Ohayon J
    Phys Med Biol; 2008 Nov; 53(22):6569-90. PubMed ID: 18978443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-mimicking bladder wall phantoms for evaluating acoustic radiation force-optical coherence elastography systems.
    Ejofodomi OA; Zderic V; Zara JM
    Med Phys; 2010 Apr; 37(4):1440-8. PubMed ID: 20443465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric imaging of viscoelasticity using optical coherence elastography.
    Wijesinghe P; McLaughlin RA; Sampson DD; Kennedy BF
    Phys Med Biol; 2015 Mar; 60(6):2293-307. PubMed ID: 25715798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of contrast in images generated with transient acoustic radiation force.
    Nightingale K; Palmeri M; Trahey G
    Ultrasound Med Biol; 2006 Jan; 32(1):61-72. PubMed ID: 16364798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic properties of soft tissue-mimicking phantoms assessed by combined use of laser ultrasonics and low coherence interferometry.
    Li C; Huang Z; Wang RK
    Opt Express; 2011 May; 19(11):10153-63. PubMed ID: 21643273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic radiation force optical coherence elastography for evaluating mechanical properties of soft condensed matters and its biological applications.
    Liu HC; Kijanka P; Urban MW
    J Biophotonics; 2020 Mar; 13(3):e201960134. PubMed ID: 31872545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear wave propagation in viscoelastic media: validation of an approximate forward model.
    Zvietcovich F; Baddour N; Rolland JP; Parker KJ
    Phys Med Biol; 2019 Jan; 64(2):025008. PubMed ID: 30524099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bubble-based acoustic radiation force elasticity imaging.
    Erpelding TN; Hollman KW; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):971-9. PubMed ID: 16118978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.