These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 25974175)
1. Rational design of metallic nanocavities for resonantly enhanced four-wave mixing. Almeida E; Prior Y Sci Rep; 2015 May; 5():10033. PubMed ID: 25974175 [TBL] [Abstract][Full Text] [Related]
2. Optimizing the Nonlinear Optical Response of Plasmonic Metasurfaces. Blechman Y; Almeida E; Sain B; Prior Y Nano Lett; 2019 Jan; 19(1):261-268. PubMed ID: 30540907 [TBL] [Abstract][Full Text] [Related]
3. Exploring the Magnetic and Electric Side of Light through Plasmonic Nanocavities. Ernandes C; Lin HJ; Mortier M; Gredin P; Mivelle M; Aigouy L Nano Lett; 2018 Aug; 18(8):5098-5103. PubMed ID: 30001486 [TBL] [Abstract][Full Text] [Related]
5. Broadband Plasmon-Enhanced Four-Wave Mixing in Monolayer MoS Dai Y; Wang Y; Das S; Li S; Xue H; Mohsen A; Sun Z Nano Lett; 2021 Jul; 21(14):6321-6327. PubMed ID: 34279968 [TBL] [Abstract][Full Text] [Related]
6. Ultra-broadband enhancement of nonlinear optical processes from randomly patterned super absorbing metasurfaces. Zhang N; Ji Z; Cheney AR; Song H; Ji D; Zeng X; Chen B; Zhang T; Cartwright AN; Shi K; Gan Q Sci Rep; 2017 Jun; 7(1):4346. PubMed ID: 28659592 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors. Fan JR; Wu WG; Chen ZJ; Zhu J; Li J Nanoscale; 2017 Mar; 9(10):3416-3423. PubMed ID: 28009895 [TBL] [Abstract][Full Text] [Related]
8. Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures. Butet J; Martin OJ Opt Express; 2014 Dec; 22(24):29693-707. PubMed ID: 25606900 [TBL] [Abstract][Full Text] [Related]
9. Enhanced four-wave mixing with nonlinear plasmonic metasurfaces. Jin B; Argyropoulos C Sci Rep; 2016 Jun; 6():28746. PubMed ID: 27345755 [TBL] [Abstract][Full Text] [Related]
10. Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. Gallinet B; Martin OJ ACS Nano; 2011 Nov; 5(11):8999-9008. PubMed ID: 22026329 [TBL] [Abstract][Full Text] [Related]
11. Nonlinear light amplification via 3D plasmonic nanocavities. Shen S; Zeng Y; Zheng Z; Gao R; Sun G; Yang Z Opt Express; 2022 Jan; 30(2):2610-2625. PubMed ID: 35209397 [TBL] [Abstract][Full Text] [Related]
12. Coupling of light from microdisk lasers into plasmonic nano-antennas. Hattori HT; Li Z; Liu D; Rukhlenko ID; Premaratne M Opt Express; 2009 Nov; 17(23):20878-84. PubMed ID: 19997324 [TBL] [Abstract][Full Text] [Related]
13. Full-wave electromagentic analysis of a plasmonic nanoparticle separated from a plasmonic film by a thin spacer layer. Trivedi R; Thomas A; Dhawan A Opt Express; 2014 Aug; 22(17):19970-89. PubMed ID: 25321207 [TBL] [Abstract][Full Text] [Related]
15. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances. Sharma Y; Dhawan A Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249 [TBL] [Abstract][Full Text] [Related]
16. Elevating Surface-Enhanced Infrared Absorption with Quantum Mechanical Effects of Plasmonic Nanocavities. Huang G; Liu K; Shi G; Guo Q; Li X; Liu Z; Ma W; Wang T Nano Lett; 2022 Aug; 22(15):6083-6090. PubMed ID: 35866846 [TBL] [Abstract][Full Text] [Related]
17. Analysis of third harmonic generation and four wave mixing in gold nanostructures by nonlinear finite difference time domain. Sasanpour P; Shahmansouri A; Rashidian B J Nanosci Nanotechnol; 2010 Nov; 10(11):7179-82. PubMed ID: 21137892 [TBL] [Abstract][Full Text] [Related]