These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Zhang NX; Messelink GJ; Alba JM; Schuurink RC; Kant MR; Janssen A Oecologia; 2018 Jan; 186(1):101-113. PubMed ID: 29124341 [TBL] [Abstract][Full Text] [Related]
3. Effects of far-red light on the behaviour and reproduction of the zoophytophagous predator Macrolophus pygmaeus and its interaction with a whitefly herbivore. Meijer D; Hopkoper S; Weldegergis BT; Westende WV; Gort G; van Loon JJA; Dicke M Plant Cell Environ; 2024 Jan; 47(1):187-196. PubMed ID: 37705240 [TBL] [Abstract][Full Text] [Related]
4. Biological control of Tetranychus urticae by Phytoseiulus macropilis and Macrolophus pygmaeus in tomato greenhouses. Gigon V; Camps C; Le Corff J Exp Appl Acarol; 2016 Jan; 68(1):55-70. PubMed ID: 26481345 [TBL] [Abstract][Full Text] [Related]
5. Down-regulation of plant defence in a resident spider mite species and its effect upon con- and heterospecifics. Godinho DP; Janssen A; Dias T; Cruz C; Magalhães S Oecologia; 2016 Jan; 180(1):161-7. PubMed ID: 26369779 [TBL] [Abstract][Full Text] [Related]
6. Modelling the interaction between a pest (Aculops lycopersici), two predators (Pronematus ubiquitus and Macrolophus pygmaeus) and climate variables: a 3-year greenhouse study in a tomato crop. Moerkens R; Vangansbeke D; Duarte MVA; Bellinkx S; De Roo E; Pijnakker J; Wäckers F Pest Manag Sci; 2023 Dec; 79(12):5362-5373. PubMed ID: 37632129 [TBL] [Abstract][Full Text] [Related]
7. The omnivorous predator Macrolophus pygmaeus, a good candidate for the control of both greenhouse whitefly and poinsettia thrips on gerbera plants. Leman A; Ingegno BL; Tavella L; Janssen A; Messelink GJ Insect Sci; 2020 Jun; 27(3):510-518. PubMed ID: 30549212 [TBL] [Abstract][Full Text] [Related]
8. Two in one: the neotropical mirid predator Macrolophus basicornis increases pest control by feeding on plants. Silva DB; Hanel A; Franco FP; de Castro Silva-Filho M; Bento JMS Pest Manag Sci; 2022 Aug; 78(8):3314-3323. PubMed ID: 35485909 [TBL] [Abstract][Full Text] [Related]
9. Defense suppression benefits herbivores that have a monopoly on their feeding site but can backfire within natural communities. Glas JJ; Alba JM; Simoni S; Villarroel CA; Stoops M; Schimmel BC; Schuurink RC; Sabelis MW; Kant MR BMC Biol; 2014 Nov; 12():98. PubMed ID: 25403155 [TBL] [Abstract][Full Text] [Related]
10. Combination of generalist predators, Nesidiocoris tenuis and Macrolophus pygmaeus, with a companion plant, Sesamum indicum: What benefit for biological control of Tuta absoluta? Konan KAJ; Monticelli LS; Ouali-N'goran SM; Ramirez-Romero R; Martin T; Desneux N PLoS One; 2021; 16(9):e0257925. PubMed ID: 34591899 [TBL] [Abstract][Full Text] [Related]
11. Induced plant-defenses suppress herbivore reproduction but also constrain predation of their offspring. Ataide LM; Pappas ML; Schimmel BC; Lopez-Orenes A; Alba JM; Duarte MV; Pallini A; Schuurink RC; Kant MR Plant Sci; 2016 Nov; 252():300-310. PubMed ID: 27717467 [TBL] [Abstract][Full Text] [Related]
12. Herbivore performance and plant defense after sequential attacks by inducing and suppressing herbivores. de Oliveira EF; Pallini A; Janssen A Insect Sci; 2019 Feb; 26(1):108-118. PubMed ID: 28636085 [TBL] [Abstract][Full Text] [Related]
13. Herbivores with similar feeding modes interact through the induction of different plant responses. de Oliveira EF; Pallini A; Janssen A Oecologia; 2016 Jan; 180(1):1-10. PubMed ID: 26025574 [TBL] [Abstract][Full Text] [Related]
14. Zoophytophagous mites can trigger plant-genotype specific defensive responses affecting potential prey beyond predation: the case of Euseius stipulatus and Tetranychus urticae in citrus. Cruz-Miralles J; Cabedo-López M; Pérez-Hedo M; Flors V; Jaques JA Pest Manag Sci; 2019 Jul; 75(7):1962-1970. PubMed ID: 30578583 [TBL] [Abstract][Full Text] [Related]
15. Oviposition behavior of the mirid Macrolophus pygmaeus under risk of intraguild predation and cannibalism. Dumont F; Lucas É; Alomar O Insect Sci; 2021 Feb; 28(1):224-230. PubMed ID: 31916362 [TBL] [Abstract][Full Text] [Related]
16. Induced Tomato Plant Resistance Against Pérez-Hedo M; Arias-Sanguino ÁM; Urbaneja A Front Plant Sci; 2018; 9():1419. PubMed ID: 30333844 [TBL] [Abstract][Full Text] [Related]
17. High population densities of Macrolophus pygmaeus on tomato plants can cause economic fruit damage: interaction with Pepino mosaic virus? Moerkens R; Berckmoes E; Van Damme V; Ortega-Parra N; Hanssen I; Wuytack M; Wittemans L; Casteels H; Tirry L; De Clercq P; De Vis R Pest Manag Sci; 2016 Jul; 72(7):1350-8. PubMed ID: 26419416 [TBL] [Abstract][Full Text] [Related]
18. Odour-mediated responses of a predatory mirid bug and its prey, the two-spotted spider mite. Moayeri HR; Ashouri A; Brødsgaard HF; Enkegaard A Exp Appl Acarol; 2006; 40(1):27-36. PubMed ID: 16933018 [TBL] [Abstract][Full Text] [Related]
19. Changes in plant responses induced by an arthropod influence the colonization behavior of a subsequent herbivore. Silva DB; Jiménez A; Urbaneja A; Pérez-Hedo M; Bento JM Pest Manag Sci; 2021 Sep; 77(9):4168-4180. PubMed ID: 33938117 [TBL] [Abstract][Full Text] [Related]
20. Omnivore-herbivore interactions: thrips and whiteflies compete via the shared host plant. Pappas ML; Tavlaki G; Triantafyllou A; Broufas G Sci Rep; 2018 Mar; 8(1):3996. PubMed ID: 29507335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]