These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25974432)

  • 1. Nondiffusive transport regimes for suprathermal ions in turbulent plasmas.
    Bovet A; Fasoli A; Ricci P; Furno I; Gustafson K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):041101. PubMed ID: 25974432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Resolved Measurements of Suprathermal Ion Transport Induced by Intermittent Plasma Blob Filaments.
    Bovet A; Fasoli A; Furno I
    Phys Rev Lett; 2014 Nov; 113(22):225001. PubMed ID: 25494075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time intermittency in nondiffusive transport regimes of suprathermal ions in turbulent plasmas.
    Manke F; Baquero-Ruiz M; Furno I; Chellaï O; Fasoli A; Ricci P
    Phys Rev E; 2019 May; 99(5-1):053208. PubMed ID: 31212579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nondiffusive suprathermal ion transport in simple magnetized toroidal plasmas.
    Gustafson K; Ricci P; Furno I; Fasoli A
    Phys Rev Lett; 2012 Jan; 108(3):035006. PubMed ID: 22400754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Truncated Lévy motion through path integrals and applications to nondiffusive suprathermal ion transport.
    Manke F; Baquero-Ruiz M; Furno I; Chellaï O; Fasoli A; Ricci P
    Phys Rev E; 2019 Nov; 100(5-1):052122. PubMed ID: 31869979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-consistent dynamics of impurities in magnetically confined plasmas: turbulence intermittency and nondiffusive transport.
    Futatani S; del-Castillo-Negrete D; Garbet X; Benkadda S; Dubuit N
    Phys Rev Lett; 2012 Nov; 109(18):185005. PubMed ID: 23215289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of energetic-particle-driven geodesic acoustic modes on turbulence.
    Zarzoso D; Sarazin Y; Garbet X; Dumont R; Strugarek A; Abiteboul J; Cartier-Michaud T; Dif-Pradalier G; Ghendrih P; Grandgirard V; Latu G; Passeron C; Thomine O
    Phys Rev Lett; 2013 Mar; 110(12):125002. PubMed ID: 25166813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nondiffusive transport in plasma turbulence: a fractional diffusion approach.
    del-Castillo-Negrete D; Carreras BA; Lynch VE
    Phys Rev Lett; 2005 Feb; 94(6):065003. PubMed ID: 15783738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turbulent transport and heating of trace heavy ions in hot magnetized plasmas.
    Barnes M; Parra FI; Dorland W
    Phys Rev Lett; 2012 Nov; 109(18):185003. PubMed ID: 23215287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbulence Suppression by Energetic Particle Effects in Modern Optimized Stellarators.
    Di Siena A; Bañón Navarro A; Jenko F
    Phys Rev Lett; 2020 Sep; 125(10):105002. PubMed ID: 32955298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New High-Confinement Regime with Fast Ions in the Core of Fusion Plasmas.
    Di Siena A; Bilato R; Görler T; Navarro AB; Poli E; Bobkov V; Jarema D; Fable E; Angioni C; Kazakov YO; Ochoukov R; Schneider P; Weiland M; Jenko F; The Asdex Upgrade Team
    Phys Rev Lett; 2021 Jul; 127(2):025002. PubMed ID: 34296928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of suprathermal electrons inside a laser accelerated plasma via highly-resolved K
    Šmíd M; Renner O; Colaitis A; Tikhonchuk VT; Schlegel T; Rosmej FB
    Nat Commun; 2019 Sep; 10(1):4212. PubMed ID: 31527588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic constraints on stochastic acceleration in compressional turbulence.
    Fisk LA; Gloeckler G
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5749-54. PubMed ID: 17376865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SupraThermal Ion Monitor for space weather predictions.
    Allegrini F; Desai MI; Livi S; McComas DJ; Ho GC
    Rev Sci Instrum; 2014 May; 85(5):054501. PubMed ID: 24880387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turbulent transport of trapped-electron modes in collisionless plasmas.
    Xiao Y; Lin Z
    Phys Rev Lett; 2009 Aug; 103(8):085004. PubMed ID: 19792734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic techniques for measuring suprathermal electron dynamics in plasmas (invited).
    Coda S
    Rev Sci Instrum; 2008 Oct; 79(10):10F501. PubMed ID: 19044646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intense geodesic acousticlike modes driven by suprathermal ions in a tokamak plasma.
    Nazikian R; Fu GY; Austin ME; Berk HL; Budny RV; Gorelenkov NN; Heidbrink WW; Holcomb CT; Kramer GJ; McKee GR; Makowski MA; Solomon WM; Shafer M; Strait EJ; Zeeland MA
    Phys Rev Lett; 2008 Oct; 101(18):185001. PubMed ID: 18999835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion beam capture and charge breeding in electron cyclotron resonance ion source plasmas.
    Kim JS; Zhao L; Cluggish BP; Pardo R
    Rev Sci Instrum; 2007 Oct; 78(10):103503. PubMed ID: 17979415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High- and low-confinement modes in simple magnetized toroidal plasmas.
    Ricci P; Rogers BN; Brunner S
    Phys Rev Lett; 2008 Jun; 100(22):225002. PubMed ID: 18643424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A double-cusp type electrostatic analyzer for high-cadence solar-wind suprathermal ion observations.
    Ogasawara K; Allegrini F; Desai MI; Ebert RW; Fuselier SA; Jahn JM; Livi SA; McComas DJ
    Rev Sci Instrum; 2018 Nov; 89(11):114503. PubMed ID: 30501281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.