These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 25974495)
1. Sound propagation in liquid foams: Unraveling the balance between physical and chemical parameters. Pierre J; Giraudet B; Chasle P; Dollet B; Saint-Jalmes A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042311. PubMed ID: 25974495 [TBL] [Abstract][Full Text] [Related]
2. A technique for measuring velocity and attenuation of ultrasound in liquid foams. Pierre J; Elias F; Leroy V Ultrasonics; 2013 Feb; 53(2):622-9. PubMed ID: 23168271 [TBL] [Abstract][Full Text] [Related]
3. Investigating the origin of acoustic attenuation in liquid foams. Pierre J; Gaulon C; Derec C; Elias F; Leroy V Eur Phys J E Soft Matter; 2017 Aug; 40(8):73. PubMed ID: 28822121 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical bubble size distributions in coarsening wet liquid foams. Galvani N; Pasquet M; Mukherjee A; Requier A; Cohen-Addad S; Pitois O; Höhler R; Rio E; Salonen A; Durian DJ; Langevin D Proc Natl Acad Sci U S A; 2023 Sep; 120(38):e2306551120. PubMed ID: 37708201 [TBL] [Abstract][Full Text] [Related]
5. Acoustic characterisation of liquid foams with an impedance tube. Pierre J; Guillermic RM; Elias F; Drenckhan W; Leroy V Eur Phys J E Soft Matter; 2013 Oct; 36(10):113. PubMed ID: 24122276 [TBL] [Abstract][Full Text] [Related]
6. Foams prepared from whey protein isolate and egg white protein: 1. Physical, microstructural, and interfacial properties. Yang X; Berry TK; Foegeding EA J Food Sci; 2009 Jun; 74(5):E259-68. PubMed ID: 19646041 [TBL] [Abstract][Full Text] [Related]
7. Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: impact of interfacial rigidity. Le Merrer M; Cohen-Addad S; Höhler R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022303. PubMed ID: 24032829 [TBL] [Abstract][Full Text] [Related]
8. Resonant acoustic propagation and negative density in liquid foams. Pierre J; Dollet B; Leroy V Phys Rev Lett; 2014 Apr; 112(14):148307. PubMed ID: 24766029 [TBL] [Abstract][Full Text] [Related]
9. Two-mode dynamics in dispersed systems: the case of particle-stabilized foams studied by diffusing wave spectroscopy. Stocco A; Crassous J; Salonen A; Saint-Jalmes A; Langevin D Phys Chem Chem Phys; 2011 Feb; 13(8):3064-72. PubMed ID: 21107475 [TBL] [Abstract][Full Text] [Related]
10. Interfacial Stabilization of Fiber-Laden Foams with Carboxymethylated Lignin toward Strong Nonwoven Networks. Li S; Xiang W; Järvinen M; Lappalainen T; Salminen K; Rojas OJ ACS Appl Mater Interfaces; 2016 Aug; 8(30):19827-35. PubMed ID: 27398988 [TBL] [Abstract][Full Text] [Related]
11. Stability and viscoelasticity of magneto-Pickering foams. Blanco E; Lam S; Smoukov SK; Velikov KP; Khan SA; Velev OD Langmuir; 2013 Aug; 29(32):10019-27. PubMed ID: 23863109 [TBL] [Abstract][Full Text] [Related]
12. Bubble statistics and coarsening dynamics for quasi-two-dimensional foams with increasing liquid content. Roth AE; Jones CD; Durian DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042304. PubMed ID: 23679411 [TBL] [Abstract][Full Text] [Related]
14. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation. Ogam E; Depollier C; Fellah ZE Rev Sci Instrum; 2010 Sep; 81(9):094902. PubMed ID: 20887001 [TBL] [Abstract][Full Text] [Related]