These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 25974580)

  • 1. Nanobubbles around plasmonic nanoparticles: Thermodynamic analysis.
    Lombard J; Biben T; Merabia S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043007. PubMed ID: 25974580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of nanobubble generation around overheated nanoparticles.
    Lombard J; Biben T; Merabia S
    Phys Rev Lett; 2014 Mar; 112(10):105701. PubMed ID: 24679307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump-probe spectral measurements of aqueous colloidal gold nanoparticles.
    Katayama T; Setoura K; Werner D; Miyasaka H; Hashimoto S
    Langmuir; 2014 Aug; 30(31):9504-13. PubMed ID: 25083945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vapor Nanobubbles around Heated Nanoparticles: Wetting Dependence of the Local Fluid Thermodynamics and Kinetics of Nucleation.
    Gutiérrez-Varela O; Lombard J; Biben T; Santamaria R; Merabia S
    Langmuir; 2023 Dec; 39(50):18263-18275. PubMed ID: 38061075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ballistic heat transport in laser generated nano-bubbles.
    Lombard J; Biben T; Merabia S
    Nanoscale; 2016 Aug; 8(31):14870-6. PubMed ID: 27461058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics investigation of nanoscale cavitation dynamics.
    Sasikumar K; Keblinski P
    J Chem Phys; 2014 Dec; 141(23):234508. PubMed ID: 25527949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation and Evolution of Nanobubbles on Heated Nanoparticles: A Molecular Dynamics Study.
    Pu JH; Sun J; Wang W; Wang HS
    Langmuir; 2020 Mar; 36(9):2375-2382. PubMed ID: 32011891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for Generation and Detection of Nonstationary Vapor Nanobubbles Around Plasmonic Nanoparticles.
    Lukianova-Hleb EY; Lapotko DO
    Methods Mol Biol; 2017; 1530():165-192. PubMed ID: 28150203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of Formation of a Vapor Nanobubble Around a Heated Nanoparticle.
    Maheshwari S; van der Hoef M; Prosperetti A; Lohse D
    J Phys Chem C Nanomater Interfaces; 2018 Sep; 122(36):20571-20580. PubMed ID: 30245761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surface modification on interfacial nanobubble morphology and contact line tension.
    Rangharajan KK; Kwak KJ; Conlisk AT; Wu Y; Prakash S
    Soft Matter; 2015 Jul; 11(26):5214-23. PubMed ID: 26041331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Experimental Study on Bubble Collapsing Effect of Nanobubble Using Ultrasonic Wave.
    Kim M; Song S; Kim W; Han JG
    J Nanosci Nanotechnol; 2020 Jan; 20(1):636-642. PubMed ID: 31383225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles.
    Lukianova-Hleb E; Hu Y; Latterini L; Tarpani L; Lee S; Drezek RA; Hafner JH; Lapotko DO
    ACS Nano; 2010 Apr; 4(4):2109-23. PubMed ID: 20307085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.
    Sigalotti LD; Troconis J; Sira E; Peña-Polo F; Klapp J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013021. PubMed ID: 25122383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High temperature and pressure inside a dissolving oxygen nanobubble.
    Yasui K; Tuziuti T; Kanematsu W
    Ultrason Sonochem; 2019 Jul; 55():308-312. PubMed ID: 30686604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the Interaction between AFM Tips and Pinned Surface Nanobubbles.
    Guo Z; Liu Y; Xiao Q; Schönherr H; Zhang X
    Langmuir; 2016 Jan; 32(3):751-8. PubMed ID: 26751634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced fluctuation for pinned surface nanobubbles.
    Guo Z; Zhang X
    Phys Rev E; 2019 Nov; 100(5-1):052803. PubMed ID: 31869961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrogeneration of single nanobubbles at sub-50-nm-radius platinum nanodisk electrodes.
    Luo L; White HS
    Langmuir; 2013 Sep; 29(35):11169-75. PubMed ID: 23957440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle.
    Fang Z; Zhen YR; Neumann O; Polman A; García de Abajo FJ; Nordlander P; Halas NJ
    Nano Lett; 2013 Apr; 13(4):1736-42. PubMed ID: 23517407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme conditions in a dissolving air nanobubble.
    Yasui K; Tuziuti T; Kanematsu W
    Phys Rev E; 2016 Jul; 94(1-1):013106. PubMed ID: 27575216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical heat flux around strongly heated nanoparticles.
    Merabia S; Keblinski P; Joly L; Lewis LJ; Barrat JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021404. PubMed ID: 19391744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.