BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2597465)

  • 1. In vivo performance of a transcutaneous energy transmission system with the Penn State motor driven ventricular assist device.
    Weiss WJ; Rosenberg G; Snyder AJ; Pae WE; Richenbacher WE; Pierce WS
    ASAIO Trans; 1989; 35(3):284-8. PubMed ID: 2597465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Totally implantable total artificial heart and ventricular assist device with multipurpose miniature electromechanical energy system.
    Takatani S; Orime Y; Tasai K; Ohara Y; Naito K; Mizuguchi K; Makinouchi K; Damm G; Glueck J; Ling J
    Artif Organs; 1994 Jan; 18(1):80-92. PubMed ID: 8141662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental analysis and development of the current and voltage control method by changing the driving frequency for the transcutaneous energy transmission system.
    Miura H; Yamada A; Shiraishi Y; Yambe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1319-22. PubMed ID: 26736511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thoratec transcutaneous energy transformer system: a review and update.
    Rintoul TC; Dolgin A
    ASAIO J; 2004; 50(4):397-400. PubMed ID: 15307556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functions for detecting malposition of transcutaneous energy transmission coils.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Mochizuki S; Ishimaru M; Takiura K; Baba A; Toyama T; Imachi K
    ASAIO J; 2003; 49(4):469-74. PubMed ID: 12918593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device.
    Okamoto E; Yamamoto Y; Akasaka Y; Motomura T; Mitamura Y; Nosé Y
    Artif Organs; 2009 Aug; 33(8):622-6. PubMed ID: 19769776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A transcutaneous energy transmission system for artificial heart adapting to changing impedance.
    Fu Y; Hu L; Ruan X; Fu X
    Artif Organs; 2015 Apr; 39(4):378-87. PubMed ID: 25349072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Heartmate II: design and development of a fully sealed axial flow left ventricular assist system.
    Burke DJ; Burke E; Parsaie F; Poirier V; Butler K; Thomas D; Taylor L; Maher T
    Artif Organs; 2001 May; 25(5):380-5. PubMed ID: 11403668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A completely implanted left ventricular assist device. Chronic in vivo testing.
    Weiss WJ; Rosenberg G; Snyder AJ; Donachy J; Reibson J; Kawaguchi O; Sapirstein JS; Pae WE; Pierce WS
    ASAIO J; 1993; 39(3):M427-32. PubMed ID: 8268572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The re-design at the transformer portion of transcutaneous energy transmission system for all implantable devices.
    Watada M; Saisho R; Kim YJ; Ohuchi K; Takatani S; Um YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1035-8. PubMed ID: 18002137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a compact, highly efficient, totally implantable motor-driven assist pump system.
    Okamoto E; Tomoda K; Yamamoto K; Mitamura Y; Mikami T
    Artif Organs; 1994 Dec; 18(12):911-7. PubMed ID: 7887828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic algorithm optimization of transcutaneous energy transmission systems for implantable ventricular assist devices.
    Byron K; Bluvshtein V; Lucke L
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():659-62. PubMed ID: 24109773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrohydraulic ventricular assist device development.
    Diegel PD; Mussivand T; Holfert JW; Nahon D; Miller J; Maclean GK; Santerre JP; Bearnson GB; Juretich J; Hansen AC
    ASAIO Trans; 1991; 37(3):M206-7. PubMed ID: 1751113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safety considerations for wireless delivery of continuous power to implanted medical devices.
    Lucke L; Bluvshtein V
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():286-9. PubMed ID: 25569953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; Bélanger G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrohydraulic ventricular assist device development.
    Diegel PD; Mussivand T; Holfert JW; Juretich JT; Miller JA; Maclean GK; Szurmak Z; Santerre JP; Rajagopalan K; Dew PA
    ASAIO J; 1992; 38(3):M306-10. PubMed ID: 1457871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcutaneous Pulsed RF Energy Transfer Mitigates Tissue Heating in High Power Demand Implanted Device Applications: In Vivo and In Silico Models Results.
    Karim ML; Bosnjak AM; McLaughlin J; Crawford P; McEneaney D; Escalona OJ
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unlocking the box: basic requirements for an ideal ventricular assist device controller.
    Medvedev AL; Karimov JH; Kuban BD; Horvath DJ; Moazami N; Fukamachi K
    Expert Rev Med Devices; 2017 May; 14(5):393-400. PubMed ID: 28395539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable air supply for pneumatic artificial hearts and ventricular assist devices.
    Sipin AJ; Fabrey WJ; Smith SH; Doussourd JD; Olsen DB
    Artif Organs; 1992 Aug; 16(4):431-8. PubMed ID: 10078289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart.
    Ahn JM; Kang DW; Kim HC; Min BG
    ASAIO J; 1993; 39(3):M208-12. PubMed ID: 8268530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.