These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 25974654)

  • 1. Metrology of confined flows using wide field nanoparticle velocimetry.
    Ranchon H; Picot V; Bancaud A
    Sci Rep; 2015 May; 5():10128. PubMed ID: 25974654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated Transport of Particles in Confined Channels with a High Roughness Amplitude.
    Ranchon H; Cacheux J; Reig B; Liot O; Teerapanich P; Leichlé T; Joseph P; Bancaud A
    Langmuir; 2018 Jan; 34(4):1394-1399. PubMed ID: 29293358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evanescent wave-based particle tracking velocimetry for nanochannel flows.
    Kazoe Y; Iseki K; Mawatari K; Kitamori T
    Anal Chem; 2013 Nov; 85(22):10780-6. PubMed ID: 24143898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel far-field nanoscopic velocimetry for nanofluidics.
    Kuang C; Wang G
    Lab Chip; 2010 Jan; 10(2):240-5. PubMed ID: 20066253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional flow in electromagnetically driven shallow two-layer fluids.
    Akkermans RA; Kamp LP; Clercx HJ; van Heijst GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026314. PubMed ID: 20866912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition from turbulent to coherent flows in confined three-dimensional active fluids.
    Wu KT; Hishamunda JB; Chen DT; DeCamp SJ; Chang YW; Fernández-Nieves A; Fraden S; Dogic Z
    Science; 2017 Mar; 355(6331):. PubMed ID: 28336609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavior of nanoparticles in extended nanospace measured by evanescent wave-based particle velocimetry.
    Kazoe Y; Mawatari K; Kitamori T
    Anal Chem; 2015 Apr; 87(8):4087-91. PubMed ID: 25806827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes.
    Bucs SS; Linares RV; Marston JO; Radu AI; Vrouwenvelder JS; Picioreanu C
    Water Res; 2015 Dec; 87():299-310. PubMed ID: 26433778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart.
    Vennemann P; Kiger KT; Lindken R; Groenendijk BC; Stekelenburg-de Vos S; ten Hagen TL; Ursem NT; Poelmann RE; Westerweel J; Hierck BP
    J Biomech; 2006; 39(7):1191-200. PubMed ID: 15896796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines.
    Lindken R; Rossi M; Grosse S; Westerweel J
    Lab Chip; 2009 Sep; 9(17):2551-67. PubMed ID: 19680579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing flow-induced nanostructure of complex fluids in arbitrary 2D flows using a fluidic four-roll mill (FFoRM).
    Corona PT; Ruocco N; Weigandt KM; Leal LG; Helgeson ME
    Sci Rep; 2018 Oct; 8(1):15559. PubMed ID: 30349018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic secondary-flow behavior in a curved microchannel under dissimilar surface conditions.
    Chun MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036312. PubMed ID: 21517592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis.
    Dürr M; Kentsch J; Müller T; Schnelle T; Stelzle M
    Electrophoresis; 2003 Feb; 24(4):722-31. PubMed ID: 12601744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-particle image velocimetry for blood flow in thick round glass micro-channels: Channel fabrication and velocity profile characterization.
    Chartrand C; Le AV; Fenech M
    MethodsX; 2023; 10():102110. PubMed ID: 37007623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-Empirical Estimation of Dean Flow Velocity in Curved Microchannels.
    Bayat P; Rezai P
    Sci Rep; 2017 Oct; 7(1):13655. PubMed ID: 29057886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV).
    Qian M; Niu L; Wang Y; Jiang B; Jin Q; Jiang C; Zheng H
    Phys Med Biol; 2010 Oct; 55(20):6069-88. PubMed ID: 20858920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels.
    Wang J; Wang M; Li Z
    J Colloid Interface Sci; 2006 Apr; 296(2):729-36. PubMed ID: 16226765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles.
    Mathaes R; Winter G; Engert J; Besheer A
    Int J Pharm; 2013 Sep; 453(2):620-9. PubMed ID: 23727141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silica nanoparticles for micro-particle imaging velocimetry: fluorosurfactant improves nanoparticle stability and brightness of immobilized iridium(III) complexes.
    Lewis DJ; Dore V; Rogers NJ; Mole TK; Nash GB; Angeli P; Pikramenou Z
    Langmuir; 2013 Nov; 29(47):14701-8. PubMed ID: 24164285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamics of viscous inhalant flows.
    True AC; Crimaldi JP
    Phys Rev E; 2017 May; 95(5-1):053107. PubMed ID: 28618575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.