These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Relative blood damage in the three phases of a prosthetic heart valve flow cycle. Lamson TC; Rosenberg G; Geselowitz DB; Deutsch S; Stinebring DR; Frangos JA; Tarbell JM ASAIO J; 1993; 39(3):M626-33. PubMed ID: 8268614 [TBL] [Abstract][Full Text] [Related]
23. The influence of open leaflet geometry on the haemodynamic flow characteristics of polyurethane trileaflet artificial heart valves. Corden J; David T; Fisher J Proc Inst Mech Eng H; 1996; 210(4):273-87. PubMed ID: 9046188 [TBL] [Abstract][Full Text] [Related]
24. An in-vitro technique for assessment of thrombogenicity in mechanical prosthetic cardiac valves: evaluation with a range of valve types. Martin AJ; Christy JR J Heart Valve Dis; 2004 May; 13(3):509-20. PubMed ID: 15222300 [TBL] [Abstract][Full Text] [Related]
25. In vitro determination of the curvatures and bending strains acting on the leaflets of polyurethane trileaflet heart valves during leaflet motion. Corden J; David T; Fisher J Proc Inst Mech Eng H; 1995; 209(4):243-53. PubMed ID: 8907218 [TBL] [Abstract][Full Text] [Related]
26. Present status of the total artificial heart at the University of Tokyo. Abe Y; Chinzei T; Isoyama T; Ono T; Mochizuki S; Saito I; Guba P; Karita T; Sun YP; Kouno A; Suzuki T; Baba K; Mabuchi K; Imachi K Artif Organs; 1999 Mar; 23(3):221-8. PubMed ID: 10198712 [TBL] [Abstract][Full Text] [Related]
27. Introduction of a flexible polymeric heart valve prosthesis with special design for aortic position. Daebritz SH; Fausten B; Hermanns B; Schroeder J; Groetzner J; Autschbach R; Messmer BJ; Sachweh JS Eur J Cardiothorac Surg; 2004 Jun; 25(6):946-52. PubMed ID: 15144993 [TBL] [Abstract][Full Text] [Related]
28. Numerical dye washout method as a tool for characterizing the heart valve flow: study of three standard mechanical heart valves. Goubergrits L; Kertzscher U; Affeld K; Petz C; Stalling D; Hege HC ASAIO J; 2008; 54(1):50-7. PubMed ID: 18204316 [TBL] [Abstract][Full Text] [Related]
29. In vitro function and durability assessment of a novel polyurethane heart valve prosthesis. Mackay TG; Bernacca GM; Fisher AC; Hindle CS; Wheatley DJ Artif Organs; 1996 Sep; 20(9):1017-25. PubMed ID: 8864023 [TBL] [Abstract][Full Text] [Related]
30. The Björk-Shiley aortic prosthesis: Flow characteristics of the present model vs. the convexo-concave model. Yoganathan AP; Reamer HH; Corcoran WH; Harrison EC Scand J Thorac Cardiovasc Surg; 1980; 14(1):1-5. PubMed ID: 7375880 [TBL] [Abstract][Full Text] [Related]
31. Development of total artificial heart with economical and durability advantages. Yambe T; Fukutome A; Kobayashi S; Nanka S; Yoshizawa M; Tabayashi K; Takeda H; Nitta S Int J Artif Organs; 1998 May; 21(5):279-84. PubMed ID: 9684910 [TBL] [Abstract][Full Text] [Related]
32. Design improvement of the jellyfish valve for long-term use in artificial hearts. Iwasaki K; Umezu M; Imachi K; Iijima K; Fujimoto T Int J Artif Organs; 2001 Jul; 24(7):463-9. PubMed ID: 11510918 [TBL] [Abstract][Full Text] [Related]
33. Development of smaller artificial ventricles and valves made by vacuum forming. Pantalos GM; Chaing BY; Bishop DN; Perkins PA; Yu LS; Jansen J; Socha PA; Marks JD; Riebman JB; Burns GL Int J Artif Organs; 1988 Sep; 11(5):373-80. PubMed ID: 3192315 [TBL] [Abstract][Full Text] [Related]
34. Polyurethane heart valves: past, present and future. Kütting M; Roggenkamp J; Urban U; Schmitz-Rode T; Steinseifer U Expert Rev Med Devices; 2011 Mar; 8(2):227-33. PubMed ID: 21381912 [TBL] [Abstract][Full Text] [Related]
35. In vitro comparison of velocity profiles and turbulent shear distal to polyurethane trileaflet and pericardial prosthetic valves. Chandran KB; Fatemi R; Schoephoerster R; Wurzel D; Hansen G; Pantalos G; Yu LS; Kolff WJ Artif Organs; 1989 Apr; 13(2):148-54. PubMed ID: 2705886 [TBL] [Abstract][Full Text] [Related]
36. Experimental right ventricle to pulmonary artery discontinuity: outcome of polyurethane valved conduits. Robin J; Martinot S; Curtil A; Vedrinne C; Tronc F; Franck M; Champsaur G J Thorac Cardiovasc Surg; 1998 Apr; 115(4):898-903. PubMed ID: 9576227 [TBL] [Abstract][Full Text] [Related]
37. Advances in design principle and fluid dynamics of a flexible polymeric heart valve. Jansen J; Willeke S; Reiners B; Harbott P; Reul H; Lo HB; Däbritz S; Rosenbaum C; Bitter A; Ziehe K ASAIO Trans; 1991; 37(3):M451-3. PubMed ID: 1751233 [TBL] [Abstract][Full Text] [Related]
38. Comparative study of the function of the Abiomed polyurethane heart valve for use in left ventricular assist devices. Leat ME; Fisher J J Biomed Eng; 1993 Nov; 15(6):516-20. PubMed ID: 8277758 [TBL] [Abstract][Full Text] [Related]
39. Cholesterol-modified polyurethane valve cusps demonstrate blood outgrowth endothelial cell adhesion post-seeding in vitro and in vivo. Stachelek SJ; Alferiev I; Connolly JM; Sacks M; Hebbel RP; Bianco R; Levy RJ Ann Thorac Surg; 2006 Jan; 81(1):47-55. PubMed ID: 16368333 [TBL] [Abstract][Full Text] [Related]
40. Constructional and functional characteristics of recent total artificial heart models TNS Brno VII, VIII, and IX. Vasků J; Urbánek P Artif Organs; 1995 Jun; 19(6):535-43. PubMed ID: 8526793 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]