These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25974880)

  • 1. Novel sample preparation for operando TEM of catalysts.
    Miller BK; Barker TM; Crozier PA
    Ultramicroscopy; 2015 Sep; 156():18-22. PubMed ID: 25974880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of catalytic gas products using electron energy-loss spectroscopy and residual gas analysis for operando transmission electron microscopy.
    Miller BK; Crozier PA
    Microsc Microanal; 2014 Jun; 20(3):815-24. PubMed ID: 24815065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical kinetics for operando electron microscopy of catalysts: 3D modeling of gas and temperature distributions during catalytic reactions.
    Vincent JL; Vance JW; Langdon JT; Miller BK; Crozier PA
    Ultramicroscopy; 2020 Nov; 218():113080. PubMed ID: 32795882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance.
    Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM
    J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis.
    Tao FF; Crozier PA
    Chem Rev; 2016 Mar; 116(6):3487-539. PubMed ID: 26955850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of temperature profiles in an environmental transmission electron microscope using computational fluid dynamics.
    Mølgaard Mortensen P; Hansen TW; Birkedal Wagner J; Degn Jensen A
    Ultramicroscopy; 2015 May; 152():1-9. PubMed ID: 25575159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quasi in situ TEM grid reactor for decoupling catalytic gas phase reactions and analysis.
    Masliuk L; Swoboda M; Algara-Siller G; Schlögl R; Lunkenbein T
    Ultramicroscopy; 2018 Dec; 195():121-128. PubMed ID: 30237142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-resolution environmental TEM for quantitative in-situ microscopy in materials science.
    Takeda S; Yoshida H
    Microscopy (Oxf); 2013 Feb; 62(1):193-203. PubMed ID: 23325929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operando chemistry of catalyst surfaces during catalysis.
    Dou J; Sun Z; Opalade AA; Wang N; Fu W; Tao FF
    Chem Soc Rev; 2017 Apr; 46(7):2001-2027. PubMed ID: 28358410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis.
    Nguyen L; Tao FF
    Rev Sci Instrum; 2016 Jun; 87(6):064101. PubMed ID: 27370473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a 300-kV gas environmental transmission electron microscope equipped with a cold field emission gun.
    Isakozawa S; Nagaoki I; Watabe A; Nagakubo Y; Saito N; Matsumoto H; Zhang XF; Taniguchi Y; Baba N
    Microscopy (Oxf); 2016 Aug; 65(4):353-62. PubMed ID: 27142511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment.
    Xin HL; Niu K; Alsem DH; Zheng H
    Microsc Microanal; 2013 Dec; 19(6):1558-68. PubMed ID: 24011167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a specimen heating holder with an evaporator and gas injector and its application for catalyst.
    Takeo K; Toshie Y; Mitsuru K; Akira W; Yasuhira N
    J Electron Microsc (Tokyo); 2006 Oct; 55(5):245-52. PubMed ID: 17135215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile Homebuilt Gas Feed and Analysis System for
    Plodinec M; Nerl HC; Farra R; Willinger MG; Stotz E; Schlögl R; Lunkenbein T
    Microsc Microanal; 2020 Apr; 26(2):220-228. PubMed ID: 32115001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing of an environmental cell TEM holder for dynamic in situ observation.
    Bataineh KM
    Rev Sci Instrum; 2016 Feb; 87(2):023705. PubMed ID: 26931858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing correlation of valence state with nanoporous structure in cobalt catalyst nanoparticles by in situ environmental TEM.
    Xin HL; Pach EA; Diaz RE; Stach EA; Salmeron M; Zheng H
    ACS Nano; 2012 May; 6(5):4241-7. PubMed ID: 22494286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degeneration Behavior of Cu Nanowires under Carbon Dioxide Environment: An
    He K; Kim K; Villa CJ; Ribet SM; Smeets P; Reis RD; Voorhees PW; Hu X; Dravid VP
    Nano Lett; 2021 Aug; 21(16):6813-6819. PubMed ID: 34379413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ ETEM synthesis of NiGa alloy nanoparticles from nitrate salt solution.
    Damsgaard CD; Duchstein LD; Sharafutdinov I; Nielsen MG; Chorkendorff I; Wagner JB
    Microscopy (Oxf); 2014 Oct; 63(5):397-401. PubMed ID: 25039076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges and Applications to
    Tyukalova E; Vimal Vas J; Ignatans R; Mueller AD; Medwal R; Imamura M; Asada H; Fukuma Y; Rawat RS; Tileli V; Duchamp M
    Acc Chem Res; 2021 Aug; ():. PubMed ID: 34339603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.