These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25974959)

  • 1. Estimating Energy Expenditure With Multiple Models Using Different Wearable Sensors.
    Cvetkovic B; Milic R; Lustrek M
    IEEE J Biomed Health Inform; 2016 Jul; 20(4):1081-7. PubMed ID: 25974959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wearable sensor module with a neural-network-based activity classification algorithm for daily energy expenditure estimation.
    Lin CW; Yang YT; Wang JS; Yang YC
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):991-8. PubMed ID: 22875251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models.
    Altini M; Casale P; Penders J; Amft O
    J Biomed Inform; 2015 Aug; 56():195-204. PubMed ID: 26079263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of EPOC adjustment on estimation of energy expenditure using activity monitors.
    Pribyslavska V; Caputo JL; Coons JM; Barry VW
    J Med Eng Technol; 2018 May; 42(4):265-273. PubMed ID: 29911930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A smartphone-driven methodology for estimating physical activities and energy expenditure in free living conditions.
    Guidoux R; Duclos M; Fleury G; Lacomme P; Lamaudière N; Manenq PH; Paris L; Ren L; Rousset S
    J Biomed Inform; 2014 Dec; 52():271-8. PubMed ID: 25048352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of the SenseWear® Armband to predict energy expenditure in pregnant women.
    Smith KM; Lanningham-Foster LM; Welk GJ; Campbell CG
    Med Sci Sports Exerc; 2012 Oct; 44(10):2001-8. PubMed ID: 22617395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy expenditure during daily activities as measured by two motion sensors in patients with COPD.
    Cavalheri V; Donária L; Ferreira T; Finatti M; Camillo CA; Cipulo Ramos EM; Pitta F
    Respir Med; 2011 Jun; 105(6):922-9. PubMed ID: 21276720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving energy expenditure estimates from wearable devices: A machine learning approach.
    O'Driscoll R; Turicchi J; Hopkins M; Horgan GW; Finlayson G; Stubbs JR
    J Sports Sci; 2020 Jul; 38(13):1496-1505. PubMed ID: 32252598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure.
    Wang J; Redmond SJ; Voleno M; Narayanan MR; Wang N; Cerutti S; Lovell NH
    Physiol Meas; 2012 Nov; 33(11):1811-30. PubMed ID: 23110944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of custom energy expenditure models for SenseWear armband in manual wheelchair users.
    Tsang K; Hiremath SV; Cooper RA; Ding D
    J Rehabil Res Dev; 2015; 52(7):793-803. PubMed ID: 26745837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running.
    Price K; Bird SR; Lythgo N; Raj IS; Wong JY; Lynch C
    J Med Eng Technol; 2017 Apr; 41(3):208-215. PubMed ID: 27919170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting free-living energy expenditure using a miniaturized ear-worn sensor: an evaluation against doubly labeled water.
    Bouarfa L; Atallah L; Kwasnicki RM; Pettitt C; Frost G; Yang GZ
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):566-75. PubMed ID: 24108707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating Oxygen Uptake During Nonsteady-State Activities and Transitions Using Wearable Sensors.
    Altini M; Penders J; Amft O
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):469-75. PubMed ID: 25594986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing energy expenditure in male endurance athletes: validity of the SenseWear Armband.
    Koehler K; Braun H; de Marées M; Fusch G; Fusch C; Schaenzer W
    Med Sci Sports Exerc; 2011 Jul; 43(7):1328-33. PubMed ID: 21131865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A statistical estimation framework for energy expenditure of physical activities from a wrist-worn accelerometer.
    Qiao Wang ; Lohit S; Toledo MJ; Buman MP; Turaga P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2631-2635. PubMed ID: 28268862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of consumer-based physical activity monitors.
    Lee JM; Kim Y; Welk GJ
    Med Sci Sports Exerc; 2014 Sep; 46(9):1840-8. PubMed ID: 24777201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posture and activity recognition and energy expenditure estimation in a wearable platform.
    Sazonov E; Hegde N; Browning RC; Melanson EL; Sazonova NA
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1339-46. PubMed ID: 26011870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy expenditure prediction using a miniaturized ear-worn sensor.
    Atallah L; Leong JJ; Lo B; Yang GZ
    Med Sci Sports Exerc; 2011 Jul; 43(7):1369-77. PubMed ID: 21200349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.