These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25975145)

  • 1. [Long-term recording of single unit activity and criteria for estimation of stability].
    Vasilyeva LN; Badakva AM; Miller NV; Zobova LN; Roschin VY; Bondar IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(6):693-701. PubMed ID: 25975145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Quality of neuronal signal registered in the monkey motor cortex with chronically implanted multiple microwires].
    Bondar' IV; Vasil'eva LN; Badakva AM; Miller NV; Zobova LN; Roshchin VIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(1):101-12. PubMed ID: 25710068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology.
    Fu TM; Hong G; Viveros RD; Zhou T; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10046-E10055. PubMed ID: 29109247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic plasticity and the analysis of the field-EPSP as well as the population spike using separate recording electrodes in the dentate gyrus in freely moving rats.
    Frey S; Frey JU
    J Neurosci Methods; 2009 Oct; 184(1):79-87. PubMed ID: 19643134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single neuronal recordings using surface micromachined polysilicon microelectrodes.
    Muthuswamy J; Okandan M; Jackson N
    J Neurosci Methods; 2005 Mar; 142(1):45-54. PubMed ID: 15652616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats.
    Tseng WT; Yen CT; Tsai ML
    J Neurosci Methods; 2011 Oct; 201(2):368-76. PubMed ID: 21889539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microelectrode array for chronic deep-brain microstimulation and recording.
    McCreery D; Lossinsky A; Pikov V; Liu X
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale recording of neuronal ensembles.
    Buzsáki G
    Nat Neurosci; 2004 May; 7(5):446-51. PubMed ID: 15114356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the stability of intracortical microelectrode arrays.
    Liu X; McCreery DB; Bullara LA; Agnew WF
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):91-100. PubMed ID: 16562636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Technic of long term neuron unit-recording on the free animal].
    Michel F
    J Physiol (Paris); 1976 Jun; 72(3):359-64. PubMed ID: 957268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable long-term chronic brain mapping at the single-neuron level.
    Fu TM; Hong G; Zhou T; Schuhmann TG; Viveros RD; Lieber CM
    Nat Methods; 2016 Oct; 13(10):875-82. PubMed ID: 27571550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.
    Jackson A; Fetz EE
    J Neurophysiol; 2007 Nov; 98(5):3109-18. PubMed ID: 17855584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recording chronically from the same neurons in awake, behaving primates.
    Tolias AS; Ecker AS; Siapas AG; Hoenselaar A; Keliris GA; Logothetis NK
    J Neurophysiol; 2007 Dec; 98(6):3780-90. PubMed ID: 17942615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-dependent neural plasticity from bench to bedside.
    Ganguly K; Poo MM
    Neuron; 2013 Oct; 80(3):729-41. PubMed ID: 24183023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term decoding stability of local field potentials from silicon arrays in primate motor cortex during a 2D center out task.
    Wang D; Zhang Q; Li Y; Wang Y; Zhu J; Zhang S; Zheng X
    J Neural Eng; 2014 Jun; 11(3):036009. PubMed ID: 24809544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.