These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 2597524)

  • 41. Occluding junctions in a renal cell line (LLC-PK1) with characteristics of proximal tubular cells.
    Rabito CA
    Am J Physiol; 1986 Apr; 250(4 Pt 2):F734-43. PubMed ID: 3963209
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polarity of transport of 2-deoxy-D-glucose and D-glucose by cultured renal epithelia (LLC-PK1).
    Miller JH; Mullin JM; McAvoy E; Kleinzeller A
    Biochim Biophys Acta; 1992 Oct; 1110(2):209-17. PubMed ID: 1390850
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell shape as an indicator of volume reabsorption in proximal nephron.
    Welling DJ; Welling LW
    Fed Proc; 1979 Feb; 38(2):121-7. PubMed ID: 761645
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The water permeability reduction after successive hypo-osmotic shocks in kidney principal cells is apically regulated.
    Katkova LE; Baturina GS; Ilyaskin AV; Zarogiannis SG; Solenov EI
    Cell Physiol Biochem; 2014; 34(5):1802-11. PubMed ID: 25502637
    [TBL] [Abstract][Full Text] [Related]  

  • 45. LLC-PK1 cells as a model system to study proximal tubule transport of water and other compounds relevant for renal stone disease.
    Verkoelen CF; Kok DJ; van der Boom BG; de Jonge HR; Schröder FH; Romijn JC
    Urol Res; 1999 Apr; 27(2):109-15. PubMed ID: 10424392
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Apical-basolateral membrane asymmetry in canine cortical collecting tubule cells. Bradykinin, arginine vasopressin, prostaglandin E2 interrelationships.
    Garcia-Perez A; Smith WL
    J Clin Invest; 1984 Jul; 74(1):63-74. PubMed ID: 6588055
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A primary culture of mouse proximal tubular cells, established on collagen-coated membranes.
    Terryn S; Jouret F; Vandenabeele F; Smolders I; Moreels M; Devuyst O; Steels P; Van Kerkhove E
    Am J Physiol Renal Physiol; 2007 Aug; 293(2):F476-85. PubMed ID: 17475898
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Renal proximal tubular cell fibronectin accumulation in response to glucose is polyol pathway dependent.
    Morrisey K; Steadman R; Williams JD; Phillips AO
    Kidney Int; 1999 Jan; 55(1):160-7. PubMed ID: 9893124
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Apical and basolateral expression of aquaporin-1 in transfected MDCK and LLC-PK cells and functional evaluation of their transcellular osmotic water permeabilities.
    Deen PM; Nielsen S; Bindels RJ; van Os CH
    Pflugers Arch; 1997 Apr; 433(6):780-7. PubMed ID: 9049170
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport.
    Ba J; Brown D; Friedman PA
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1233-43. PubMed ID: 12952858
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance.
    Alventosa-deLara E; Barredo-Damas S; Alcaina-Miranda MI; Iborra-Clar MI
    J Hazard Mater; 2012 Mar; 209-210():492-500. PubMed ID: 22326247
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics.
    Humes HD; MacKay SM; Funke AJ; Buffington DA
    Kidney Int; 1999 Jun; 55(6):2502-14. PubMed ID: 10354300
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of a primary cell culture model of the avian renal proximal tubule.
    Sutterlin GG; Laverty G
    Am J Physiol; 1998 Jul; 275(1):R220-6. PubMed ID: 9688982
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Present status and perspective of the development of a bioartificial kidney for chronic renal failure patients.
    Saito A; Aung T; Sekiguchi K; Sato Y
    Ther Apher Dial; 2006 Aug; 10(4):342-7. PubMed ID: 16911187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Channels for water flow in epithelia: characteristics and regulation.
    Whittembury G; Carpi-Medina P; González E
    Acta Physiol Pharmacol Latinoam; 1987; 37(4):555-63. PubMed ID: 2484000
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanisms of intercellular hypertonicity and isotonic fluid absorption in proximal tubules of mammalian kidneys.
    Kiil F
    Acta Physiol Scand; 2002 May; 175(1):71-83. PubMed ID: 11982506
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of fermentation conditions and microfiltration processes on membrane fouling during recovery of glucuronane polysaccharides from fermentation broths.
    Harscoat C; Jaffrin MY; Bouzerar R; Courtois J
    Biotechnol Bioeng; 1999 Dec; 65(5):500-11. PubMed ID: 10516575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tissue engineering of a bioartificial renal tubule.
    MacKay SM; Funke AJ; Buffington DA; Humes HD
    ASAIO J; 1998; 44(3):179-83. PubMed ID: 9617948
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Iodide transport in primary cultured thyroid follicle cells: evidence of a TSH-regulated channel mediating iodide efflux selectively across the apical domain of the plasma membrane.
    Nilsson M; Björkman U; Ekholm R; Ericson LE
    Eur J Cell Biol; 1990 Aug; 52(2):270-81. PubMed ID: 1706997
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Co-current crossflow microfiltration in a microchannel.
    Amar LI; Hill MI; Faria M; Guisado D; van Rijn CJM; Leonard EF
    Biomed Microdevices; 2019 Feb; 21(1):12. PubMed ID: 30725201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.