These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25975263)

  • 1. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.
    Nishio K; Pornpitra T; Izawa S; Nishiwaki-Ohkawa T; Kato S; Hashimoto K; Nakanishi S
    Plant Cell Physiol; 2015 Jun; 56(6):1053-8. PubMed ID: 25975263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the cyanobacterial circadian clock by electrochemically controlled extracellular electron transfer.
    Lu Y; Nishio K; Matsuda S; Toshima Y; Ito H; Konno T; Ishihara K; Kato S; Hashimoto K; Nakanishi S
    Angew Chem Int Ed Engl; 2014 Feb; 53(8):2208-11. PubMed ID: 24573996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The endogenous redox rhythm is controlled by a central circadian oscillator in cyanobacterium Synechococcus elongatus PCC7942.
    Tanaka K; Ishikawa M; Kaneko M; Kamiya K; Kato S; Nakanishi S
    Photosynth Res; 2019 Nov; 142(2):203-210. PubMed ID: 31485868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain.
    Tanaka K; Kaneko M; Ishikawa M; Kato S; Ito H; Kamachi T; Kamiya K; Nakanishi S
    Chemphyschem; 2017 Apr; 18(8):878-881. PubMed ID: 28194920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation.
    Tomita J; Nakajima M; Kondo T; Iwasaki H
    Science; 2005 Jan; 307(5707):251-4. PubMed ID: 15550625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular electron transfer mediated by a cytocompatible redox polymer to study the crosstalk among the mammalian circadian clock, cellular metabolism, and cellular redox state.
    Ishikawa M; Kawai K; Kaneko M; Tanaka K; Nakanishi S; Hori K
    RSC Adv; 2020 Jan; 10(3):1648-1657. PubMed ID: 35494713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The circadian rhythm regulator RpaA modulates photosynthetic electron transport and alters the preferable temperature range for growth in a cyanobacterium.
    Hasegawa H; Tsurumaki T; Imamura S; Sonoike K; Tanaka K
    FEBS Lett; 2021 May; 595(10):1480-1492. PubMed ID: 33728661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro.
    Nakajima M; Imai K; Ito H; Nishiwaki T; Murayama Y; Iwasaki H; Oyama T; Kondo T
    Science; 2005 Apr; 308(5720):414-5. PubMed ID: 15831759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A minimal circadian clock model.
    Axmann IM; Legewie S; Herzel H
    Genome Inform; 2007; 18():54-64. PubMed ID: 18546474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of circadian clock gene expression by phosphorylation states of KaiC in cyanobacteria.
    Murayama Y; Oyama T; Kondo T
    J Bacteriol; 2008 Mar; 190(5):1691-8. PubMed ID: 18165308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between in vivo bioluminescence and extracellular electron transfer in Shewanella woodyi via charge and discharge.
    Tian X; Zhao F; You L; Wu X; Zheng Z; Wu R; Jiang Y; Sun S
    Phys Chem Chem Phys; 2017 Jan; 19(3):1746-1750. PubMed ID: 28054061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular design of cytocompatible amphiphilic redox-active polymers for efficient extracellular electron transfer.
    Kaneko M; Ishikawa M; Hashimoto K; Nakanishi S
    Bioelectrochemistry; 2017 Apr; 114():8-12. PubMed ID: 27837683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4.
    Ding CM; Lv ML; Zhu Y; Jiang L; Liu H
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1446-51. PubMed ID: 25470810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A circadian timing mechanism in the cyanobacteria.
    Williams SB
    Adv Microb Physiol; 2007; 52():229-96. PubMed ID: 17027373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria.
    Miyoshi F; Nakayama Y; Kaizu K; Iwasaki H; Tomita M
    J Biol Rhythms; 2007 Feb; 22(1):69-80. PubMed ID: 17229926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox potential of the primary plastoquinone electron acceptor Q(A) in photosystem II from Thermosynechococcus elongatus determined by spectroelectrochemistry.
    Shibamoto T; Kato Y; Sugiura M; Watanabe T
    Biochemistry; 2009 Nov; 48(45):10682-4. PubMed ID: 19835366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Intercellular communication-based robust circadian oscillation of the suprachiasmatic nucleus in the brain: mechanisms beyond intracellular clock machinery].
    Doi M
    Nihon Rinsho; 2013 Dec; 71(12):2069-75. PubMed ID: 24437257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer.
    Liu X; Shi L; Gu JD
    Biotechnol Adv; 2018 Nov; 36(7):1815-1827. PubMed ID: 30196813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional autoregulation by phosphorylated and non-phosphorylated KaiC in cyanobacterial circadian rhythms.
    Takigawa-Imamura H; Mochizuki A
    J Theor Biol; 2006 Jul; 241(2):178-92. PubMed ID: 16387328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal.
    Putker M; O'Neill JS
    Mol Cells; 2016 Jan; 39(1):6-19. PubMed ID: 26810072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.