These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 25975639)

  • 21. The antibiotic resistome: challenge and opportunity for therapeutic intervention.
    Martínez JL
    Future Med Chem; 2012 Mar; 4(3):347-59. PubMed ID: 22393941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting virulence not viability in the search for future antibacterials.
    Heras B; Scanlon MJ; Martin JL
    Br J Clin Pharmacol; 2015 Feb; 79(2):208-15. PubMed ID: 24552512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Current challenges in the discovery of novel antibacterials from microbial natural products.
    Genilloud O
    Recent Pat Antiinfect Drug Discov; 2012 Dec; 7(3):189-204. PubMed ID: 22963258
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery.
    Campbell JW; Cronan JE
    Annu Rev Microbiol; 2001; 55():305-32. PubMed ID: 11544358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prospects for developing new antibacterials targeting bacterial type IIA topoisomerases.
    Tomašić T; Mašič LP
    Curr Top Med Chem; 2014; 14(1):130-51. PubMed ID: 24236722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. When will the genomics investment pay off for antibacterial discovery?
    Mills SD
    Biochem Pharmacol; 2006 Mar; 71(7):1096-102. PubMed ID: 16387281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting FtsZ for antibacterial therapy: a promising avenue.
    Kapoor S; Panda D
    Expert Opin Ther Targets; 2009 Sep; 13(9):1037-51. PubMed ID: 19659446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NMR in the design of antibacterials.
    Arsovska E; Mali G; Golič Grdadolnik S; Zega A
    Curr Med Chem; 2014; 21(38):4328-46. PubMed ID: 25387909
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topological Model for the Search of New Antibacterial Drugs. 158 Theoretical Candidates.
    Bueso-Bordils JI; Aleman PA; Zamora LL; Martin-Algarra R; Duart MJ; Antón-Fos GM
    Curr Comput Aided Drug Des; 2015; 11(4):336-45. PubMed ID: 26750567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overcoming problems of poor drug penetration into bacteria: challenges and strategies for medicinal chemists.
    Benedetto Tiz D; Kikelj D; Zidar N
    Expert Opin Drug Discov; 2018 Jun; 13(6):497-507. PubMed ID: 29566560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting bacterial RNA polymerase σ70 for development of broad-spectrum antisense antibacterials.
    Bai H; Bo X; Wang S
    Recent Pat Antiinfect Drug Discov; 2012 Dec; 7(3):213-22. PubMed ID: 22742395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATP-binding site of bacterial enzymes as a target for antibacterial drug design.
    Škedelj V; Tomašić T; Mašič LP; Zega A
    J Med Chem; 2011 Feb; 54(4):915-29. PubMed ID: 21235241
    [No Abstract]   [Full Text] [Related]  

  • 33. Current landscape in the discovery of novel antibacterial agents.
    Vila J; Moreno-Morales J; Ballesté-Delpierre C
    Clin Microbiol Infect; 2020 May; 26(5):596-603. PubMed ID: 31574341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages.
    Kim BO; Kim ES; Yoo YJ; Bae HW; Chung IY; Cho YH
    Viruses; 2019 Mar; 11(3):. PubMed ID: 30889807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applications of structure-based design to antibacterial drug discovery.
    Cain R; Narramore S; McPhillie M; Simmons K; Fishwick CW
    Bioorg Chem; 2014 Aug; 55():69-76. PubMed ID: 24962384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental Methods for Evaluating the Bacterial Uptake of Trojan Horse Antibacterials.
    Southwell JW; Black CM; Duhme-Klair AK
    ChemMedChem; 2021 Apr; 16(7):1063-1076. PubMed ID: 33238066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Benzothiazole-based Compounds in Antibacterial Drug Discovery.
    Gjorgjieva M; Tomašič T; Kikelj D; Mašič LP
    Curr Med Chem; 2018; 25(38):5218-5236. PubMed ID: 28990510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virulence-targeted Antibacterials: Concept, Promise, and Susceptibility to Resistance Mechanisms.
    Ruer S; Pinotsis N; Steadman D; Waksman G; Remaut H
    Chem Biol Drug Des; 2015 Oct; 86(4):379-99. PubMed ID: 25589217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A metabolic network approach for the identification and prioritization of antimicrobial drug targets.
    Chavali AK; D'Auria KM; Hewlett EL; Pearson RD; Papin JA
    Trends Microbiol; 2012 Mar; 20(3):113-23. PubMed ID: 22300758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacokinetic optimisation of the treatment of bacterial central nervous system infections.
    Nau R; Sörgel F; Prange HW
    Clin Pharmacokinet; 1998 Sep; 35(3):223-46. PubMed ID: 9784935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.