These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2597564)

  • 1. Effects of surface integrity on the fatigue life of thin flexing membranes.
    Sinnott MM; Hoeppner DW; Romney E; Dew PA
    ASAIO Trans; 1989; 35(3):687-90. PubMed ID: 2597564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical stability of elastomeric polymers for blood pump applications.
    Hayashi K; Takano H; Matsuda T; Umezu M
    J Biomed Mater Res; 1985 Feb; 19(2):179-93. PubMed ID: 4077879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of immersion in cholesterol-lipid solution on the tensile and fatigue properties of elastomeric polymers for blood pump applications.
    Hayashi K; Matsuda T; Takano H; Umezu M
    J Biomed Mater Res; 1984 Oct; 18(8):939-51. PubMed ID: 6544788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VAD Biomer blood sacs: mechanical tests and ultrastructural observations.
    Bedini R; Chistolini P; De Angelis G; Formisano G; Caiazza S
    Med Prog Technol; 1993; 19(2):83-8. PubMed ID: 8107668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative physical tests on segmented polyurethanes for cardiovascular applications.
    Tanzi MC; Ambrosio L; Nicolais L; Iannace S; Ghislanzoni L; Mambrito B
    Clin Mater; 1991; 8(1-2):57-64. PubMed ID: 10149149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue and hemocompatibility of polymer materials.
    Sevastianov VI; Parfeev VM
    Artif Organs; 1987 Feb; 11(1):20-5. PubMed ID: 3566579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of polyurethane under fatigue loading.
    Wiggins MJ; Anderson JM; Hiltner A
    J Biomed Mater Res A; 2003 Jun; 65(4):524-35. PubMed ID: 12761843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of surface porosity and topography on the mechanical behavior of high strength biomedical polymers.
    Evans NT; Irvin CW; Safranski DL; Gall K
    J Mech Behav Biomed Mater; 2016 Jun; 59():459-473. PubMed ID: 26986085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles.
    Yang M; Zhang Z; Hahn C; Laroche G; King MW; Guidoin R
    J Biomed Mater Res; 1999; 48(1):13-23. PubMed ID: 10029144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.
    Chaffin KA; Wilson CL; Himes AK; Dawson JW; Haddad TD; Buckalew AJ; Miller JP; Untereker DF; Simha NK
    Biomaterials; 2013 Nov; 34(33):8030-41. PubMed ID: 23871543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation and fatigue of tough 3D printed elastomer scaffolds processed by fused deposition modeling and continuous liquid interface production.
    Miller AT; Safranski DL; Wood C; Guldberg RE; Gall K
    J Mech Behav Biomed Mater; 2017 Nov; 75():1-13. PubMed ID: 28689135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and physical characterization of a novel poly(carbonate urea) urethane surface with protein crosslinker sites.
    Phaneuf MD; Quist WC; LoGerfo FW; Szycher M; Dempsey DJ; Bide MJ
    J Biomater Appl; 1997 Oct; 12(2):100-20. PubMed ID: 9399137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression mechanisms for thrombus formation on heparin-immobilized segmented polyurethane-ureas.
    Nojiri C; Okano T; Park KD; Kim SW
    ASAIO Trans; 1988; 34(3):386-98. PubMed ID: 3196537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo evaluation of polyurethanes based on novel macrodiols and MDI.
    Brandwood A; Meijs GF; Gunatillake PA; Noble KR; Schindhelm K; Rizzardo E
    J Biomater Sci Polym Ed; 1994; 6(1):41-54. PubMed ID: 7947472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of implantation on the mechanical properties of the polyurethane diaphragm of left ventricular assist devices.
    Hayashi K; Matsuda T; Takano H; Umezu M; Taenaka Y; Nakamura T
    Biomaterials; 1985 Mar; 6(2):82-8. PubMed ID: 4005358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bond strength of silicone to polyurethane following immersion of silicone in cleaning solutions.
    Deng HY; Zwetchkenbaum S; Noone AM
    J Prosthet Dent; 2004 Jun; 91(6):582-5. PubMed ID: 15211302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar groups. I. Molecular design of polymeric additives and their functions.
    Ishihara K; Tanaka S; Furukawa N; Kurita K; Nakabayashi N
    J Biomed Mater Res; 1996 Nov; 32(3):391-9. PubMed ID: 8897144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification of polyurethane heart valves: effects on fatigue life and calcification.
    Bernacca GM; Wheatley DJ
    Int J Artif Organs; 1998 Dec; 21(12):814-9. PubMed ID: 9988359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biaxial flex-fatigue and viral penetration of natural rubber latex gloves before and after artificial aging.
    Schwerin MR; Walsh DL; Coleman Richardson D; Kisielewski RW; Kotz RM; Routson LB; David Lytle C
    J Biomed Mater Res; 2002; 63(6):739-45. PubMed ID: 12418018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical and blood contacting characteristics of propyl sulphonate grafted Biomer.
    Okkema AZ; Yu XH; Cooper SL
    Biomaterials; 1991 Jan; 12(1):3-12. PubMed ID: 2009342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.