These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2597564)

  • 21. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers.
    Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA
    Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of surface hydrophilicity on ex vivo blood compatibility of segmented polyurethanes.
    Takahara A; Okkema AZ; Cooper SL; Coury AJ
    Biomaterials; 1991 Apr; 12(3):324-34. PubMed ID: 1854901
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Blood compatible polyurethane elastomers.
    Szycher M; Griffin JC; Williams JL; McMenamy JP; Stagg D
    J Biomater Appl; 1987 Oct; 2(2):290-313. PubMed ID: 3504974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatigue resistance and stiffness of glass fiber-reinforced urethane dimethacrylate composite.
    Narva KK; Lassila LV; Vallittu PK
    J Prosthet Dent; 2004 Feb; 91(2):158-63. PubMed ID: 14970762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micromechanisms of fatigue crack growth in polycarbonate polyurethane: Time dependent and hydration effects.
    Ford AC; Gramling H; Li SC; Sov JV; Srinivasan A; Pruitt LA
    J Mech Behav Biomed Mater; 2018 Mar; 79():324-331. PubMed ID: 29358150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of tests to evaluate candidate elastomers for artificial heart diaphragms.
    McMillin CR
    Artif Organs; 1987 Oct; 11(5):395-404. PubMed ID: 3689176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid.
    Bian D; Zhou W; Liu Y; Li N; Zheng Y; Sun Z
    Acta Biomater; 2016 Sep; 41():351-60. PubMed ID: 27221795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physical testing of elastomers for cardiovascular applications.
    McMillin CR
    Artif Organs; 1983 Feb; 7(1):78-91. PubMed ID: 6838410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of machining on the flexural fatigue strength of glass and polycrystalline CAD/CAM ceramics.
    Fraga S; Amaral M; Bottino MA; Valandro LF; Kleverlaan CJ; May LG
    Dent Mater; 2017 Nov; 33(11):1286-1297. PubMed ID: 28818339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of aggregation state of hard segment in segmented poly(urethaneureas) on their fatigue behavior after interaction with blood components.
    Takahara A; Tashita J; Kajiyama T; Takayanagi M
    J Biomed Mater Res; 1985 Jan; 19(1):13-34. PubMed ID: 4077870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatigue characterization of a hydroxyapatite-reinforced polyethylene composite. II. Biaxial fatigue.
    Ton That PT; Tanner KE; Bonfield W
    J Biomed Mater Res; 2000 Sep; 51(3):461-8. PubMed ID: 10880089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybridization of poly(2-methacryloyloxyethyl phosphorylcholine-block-2-ethylhexyl methacrylate) with segmented polyurethane for reducing thrombogenicity.
    Asanuma Y; Inoue Y; Yusa S; Ishihara K
    Colloids Surf B Biointerfaces; 2013 Aug; 108():239-45. PubMed ID: 23563289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High cycle fatigue behavior of implant Ti-6Al-4V in air and simulated body fluid.
    Liu YJ; Cui SM; He C; Li JK; Wang QY
    Biomed Mater Eng; 2014; 24(1):263-9. PubMed ID: 24211906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes.
    Liu Y; Inoue Y; Sakata S; Kakinoki S; Yamaoka T; Ishihara K
    J Biomater Sci Polym Ed; 2014; 25(5):474-86. PubMed ID: 24417469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermoplastic Elastomers: Materials for Heart Assist Devices.
    Piegat A; Fray ME
    Polim Med; 2016; 46(1):79-87. PubMed ID: 28397422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of Hexsyn, a polyolefin rubber.
    McMillin CR
    J Biomater Appl; 1987 Jul; 2(1):3-100. PubMed ID: 3504971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and bioactive properties of nano bioactive glass and segmented polyurethane composites.
    Aguilar-Pérez FJ; Vargas-Coronado RF; Cervantes-Uc JM; Cauich-Rodríguez JV; Covarrubias C; Pedram-Yazdani M
    J Biomater Appl; 2016 Apr; 30(9):1362-72. PubMed ID: 26767396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crack-growth properties of various elastomers with potential application in small joint prostheses.
    Hutchinson DT; Savory KM; Bachus KN
    J Biomed Mater Res; 1997 Oct; 37(1):94-9. PubMed ID: 9335353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bulk, surface and blood-contacting properties of polyether polyurethanes modified with polydimethylsiloxane macroglycols.
    Okkema AZ; Fabrizius DJ; Grasel TG; Cooper SL; Zdrahala RJ
    Biomaterials; 1989 Jan; 10(1):23-32. PubMed ID: 2713430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
    Kurtz SM; Villarraga ML; Zhao K; Edidin AA
    Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.