These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25975704)

  • 41. Wetting Transition on Liquid-Repellent Surfaces Probed by Surface Force Measurements and Confocal Imaging.
    Eriksson M; Claesson PM; Järn M; Tuominen M; Wallqvist V; Schoelkopf J; Gane PAC; Swerin A
    Langmuir; 2019 Oct; 35(41):13275-13285. PubMed ID: 31547659
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.
    Jetly A; Vakarelski IU; Thoroddsen ST
    Soft Matter; 2018 Feb; 14(9):1608-1613. PubMed ID: 29411833
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-Fluorinated Flexible Superhydrophobic Surface with Excellent Mechanical Durability and Self-Cleaning Performance.
    Lu C; Gao Y; Yu S; Zhou H; Wang X; Li L
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4750-4758. PubMed ID: 35029969
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simple and Affordable Way To Achieve Polymeric Superhydrophobic Surfaces with Biomimetic Hierarchical Roughness.
    Sun J; Li H; Huang Y; Zheng X; Liu Y; Zhuang J; Wu D
    ACS Omega; 2019 Feb; 4(2):2750-2757. PubMed ID: 31459509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design of a superhydrophobic surface using woven structures.
    Michielsen S; Lee HJ
    Langmuir; 2007 May; 23(11):6004-10. PubMed ID: 17465576
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioinspired Cavity Regulation on Superhydrophobic Spheres for Drag Reduction in an Aqueous Medium.
    Yao C; Zhang J; Xue Z; Yu K; Yu X; Yang X; Qu Q; Gan W; Wang J; Jiang L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4796-4803. PubMed ID: 33448779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wetting and wetting transitions on copper-based super-hydrophobic surfaces.
    Shirtcliffe NJ; McHale G; Newton MI; Perry CC
    Langmuir; 2005 Feb; 21(3):937-43. PubMed ID: 15667171
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity.
    Bhushan B
    Beilstein J Nanotechnol; 2011; 2():66-84. PubMed ID: 21977417
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of Low-Cost Flexible Superhydrophobic Antibacterial Surface with Dual-Scale Roughness.
    Tripathy A; Kumar A; Sreedharan S; Muralidharan G; Pramanik A; Nandi D; Sen P
    ACS Biomater Sci Eng; 2018 Jun; 4(6):2213-2223. PubMed ID: 33435043
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical Simulation and Deep Neural Network Revealed Drag Reduction of Microstructured Three-Dimensional Square Cylinders at High Reynolds Numbers.
    Wang S; Wu Q; Shi X
    Front Bioeng Biotechnol; 2022; 10():885962. PubMed ID: 35845406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Singlet oxygen generation on porous superhydrophobic surfaces: effect of gas flow and sensitizer wetting on trapping efficiency.
    Zhao Y; Liu Y; Xu Q; Barahman M; Bartusik D; Greer A; Lyons AM
    J Phys Chem A; 2014 Nov; 118(45):10364-71. PubMed ID: 24885074
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of Drag Reduction Methods and Mechanisms of Turbulent.
    Yunqing G; Tao L; Jiegang M; Zhengzan S; Peijian Z
    Appl Bionics Biomech; 2017; 2017():6858720. PubMed ID: 29104425
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing.
    Aldhaleai A; Tsai PA
    Langmuir; 2021 Jan; 37(1):348-356. PubMed ID: 33377783
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Superhydrophobic Candle Soot as a Low Fouling Stable Coating on Water Treatment Membrane Feed Spacers.
    Thamaraiselvan C; Manderfeld E; Kleinberg MN; Rosenhahn A; Arnusch CJ
    ACS Appl Bio Mater; 2021 May; 4(5):4191-4200. PubMed ID: 35006832
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Drag reduction on a patterned superhydrophobic surface.
    Truesdell R; Mammoli A; Vorobieff P; van Swol F; Brinker CJ
    Phys Rev Lett; 2006 Jul; 97(4):044504. PubMed ID: 16907578
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Surface Tension and Viscosity Dependence of Slip Length over Irregularly Structured Superhydrophobic Surfaces.
    Zhang L; Mehanna YA; Crick CR; Poole RJ
    Langmuir; 2022 Oct; 38(39):11873-11881. PubMed ID: 36125335
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How to Achieve a Monostable Cassie State on a Micropillar-Arrayed Superhydrophobic Surface.
    Huang L; Yao Y; Peng Z; Zhang B; Chen S
    J Phys Chem B; 2021 Jan; 125(3):883-894. PubMed ID: 33459010
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasma-Textured Teflon: Repulsion in Air of Water Droplets and Drag Reduction Underwater.
    Di Mundo R; Bottiglione F; Notarnicola M; Palumbo F; Pascazio G
    Biomimetics (Basel); 2017 Jan; 2(1):. PubMed ID: 31105164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Roles of Riblet and Superhydrophobic Surfaces in Energy Saving Using a Spatial Correlation Analysis.
    Liu C; Wang W; Hu X; Fang J; Liu F
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.