These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25975804)

  • 1. Potential rapid evolution of foot morphology in Italian plethodontid salamanders (Hydromantes strinatii) following the colonization of an artificial cave.
    Salvidio S; Crovetto F; Adams DC
    J Evol Biol; 2015 Jul; 28(7):1403-9. PubMed ID: 25975804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural History Constrains the Macroevolution of Foot Morphology in European Plethodontid Salamanders.
    Adams DC; Korneisel D; Young M; Nistri A
    Am Nat; 2017 Aug; 190(2):292-297. PubMed ID: 28731800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae).
    Adams DC; Nistri A
    BMC Evol Biol; 2010 Jul; 10():216. PubMed ID: 20637087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological contributions to body shape evolution in salamanders of the genus Eurycea (Plethodontidae).
    Edgington HA; Taylor DR
    PLoS One; 2019; 14(5):e0216754. PubMed ID: 31091252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats.
    Salvidio S; Palumbi G; Romano A; Costa A
    Naturwissenschaften; 2017 Apr; 104(3-4):20. PubMed ID: 28251304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders.
    Bendik NF; Meik JM; Gluesenkamp AG; Roelke CE; Chippindale PT
    BMC Evol Biol; 2013 Sep; 13():201. PubMed ID: 24044519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeography of Sardinian cave salamanders (genus Hydromantes) is mainly determined by geomorphology.
    Chiari Y; van der Meijden A; Mucedda M; Lourenço JM; Hochkirch A; Veith M
    PLoS One; 2012; 7(3):e32332. PubMed ID: 22427830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistence, isolation and diversification of a naturally fragmented species in local refugia: the case of Hydromantes strinatii.
    Cimmaruta R; Lucente D; Nascetti G
    PLoS One; 2015; 10(6):e0131298. PubMed ID: 26107249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme Adaptation in Caves.
    Soares D; Niemiller ML
    Anat Rec (Hoboken); 2020 Jan; 303(1):15-23. PubMed ID: 30537183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capture-mark-recapture data on the strictly protected Speleomantes italicus.
    Lunghi E; Corti C; Biaggini M; Merilli S; Manenti R; Zhao Y; Ficetola GF; Cianferoni F
    Ecology; 2022 May; 103(5):e3641. PubMed ID: 35066872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population dynamics and regulation in the cave salamander Speleomantes strinatii.
    Salvidio S
    Naturwissenschaften; 2007 May; 94(5):396-400. PubMed ID: 17216185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terrestriality constrains salamander limb diversification: Implications for the evolution of pentadactyly.
    Ledbetter NM; Bonett RM
    J Evol Biol; 2019 Jul; 32(7):642-652. PubMed ID: 30891861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental processes underlying the evolution of a derived foot morphology in salamanders.
    Jaekel M; Wake DB
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20437-42. PubMed ID: 18077320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next generation phylogeography of cave and surface Astyanax mexicanus.
    Coghill LM; Darrin Hulsey C; Chaves-Campos J; García de Leon FJ; Johnson SG
    Mol Phylogenet Evol; 2014 Oct; 79():368-74. PubMed ID: 25014568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent divergence with gene flow in Tennessee cave salamanders (Plethodontidae: Gyrinophilus) inferred from gene genealogies.
    Niemiller ML; Fitzpatrick BM; Miller BT
    Mol Ecol; 2008 May; 17(9):2258-75. PubMed ID: 18410292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology and life history divergence in cave and surface populations of Gammarus lacustris (L.).
    Østbye K; Østbye E; Lien AM; Lee LR; Lauritzen SE; Carlini DB
    PLoS One; 2018; 13(10):e0205556. PubMed ID: 30359400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of paedomorphosis in plethodontid salamanders: ecological correlates and re-evolution of metamorphosis.
    Bonett RM; Steffen MA; Lambert SM; Wiens JJ; Chippindale PT
    Evolution; 2014 Feb; 68(2):466-82. PubMed ID: 24102140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary replacement of components in a salamander pheromone signaling complex: more evidence for phenotypic-molecular decoupling.
    Palmer CA; Watts RA; Houck LD; Picard AL; Arnold SJ
    Evolution; 2007 Jan; 61(1):202-15. PubMed ID: 17300439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus.
    Herman A; Brandvain Y; Weagley J; Jeffery WR; Keene AC; Kono TJY; Bilandžija H; Borowsky R; Espinasa L; O'Quin K; Ornelas-García CP; Yoshizawa M; Carlson B; Maldonado E; Gross JB; Cartwright RA; Rohner N; Warren WC; McGaugh SE
    Mol Ecol; 2018 Nov; 27(22):4397-4416. PubMed ID: 30252986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroevolution of desiccation-related morphology in plethodontid salamanders as inferred from a novel surface area to volume ratio estimation approach.
    Baken EK; Mellenthin LE; Adams DC
    Evolution; 2020 Feb; 74(2):476-486. PubMed ID: 31849047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.