BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 25975968)

  • 1. A multi-SNP association test for complex diseases incorporating an optimal P-value threshold algorithm in nuclear families.
    Wang YT; Sung PY; Lin PL; Yu YW; Chung RH
    BMC Genomics; 2015 May; 16(1):381. PubMed ID: 25975968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient weighted tag SNP-set analytical method in genome-wide association studies.
    Yan B; Wang S; Jia H; Liu X; Wang X
    BMC Genet; 2015 Mar; 16():25. PubMed ID: 25879733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies.
    Duggal P; Gillanders EM; Holmes TN; Bailey-Wilson JE
    BMC Genomics; 2008 Oct; 9():516. PubMed ID: 18976480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SNP-based pathway enrichment analysis for genome-wide association studies.
    Weng L; Macciardi F; Subramanian A; Guffanti G; Potkin SG; Yu Z; Xie X
    BMC Bioinformatics; 2011 Apr; 12():99. PubMed ID: 21496265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data.
    Kang C; Yu H; Yi GS
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S3. PubMed ID: 23566118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SNP ratio test: pathway analysis of genome-wide association datasets.
    O'Dushlaine C; Kenny E; Heron EA; Segurado R; Gill M; Morris DW; Corvin A
    Bioinformatics; 2009 Oct; 25(20):2762-3. PubMed ID: 19620097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Powerful and Adaptive Testing for Multi-trait and Multi-SNP Associations with GWAS and Sequencing Data.
    Kim J; Zhang Y; Pan W;
    Genetics; 2016 Jun; 203(2):715-31. PubMed ID: 27075728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a candidate single-nucleotide polymorphism related to chemotherapeutic response through a combination of knowledge-based algorithm and hypothesis-free genomic data.
    Takahashi H; Kaniwa N; Saito Y; Sai K; Hamaguchi T; Shirao K; Shimada Y; Matsumura Y; Ohtsu A; Yoshino T; Takahashi A; Odaka Y; Okuyama M; Sawada J; Sakamoto H; Yoshida T
    J Biosci Bioeng; 2013 Dec; 116(6):768-73. PubMed ID: 23816762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing gene length biases in gene set analysis of Genome-Wide Association Studies.
    Jia P; Tian J; Zhao Z
    Int J Comput Biol Drug Des; 2010; 3(4):297-310. PubMed ID: 21297229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering networks from genome-wide association studies via circular genomic permutation.
    Cabrera CP; Navarro P; Huffman JE; Wright AF; Hayward C; Campbell H; Wilson JF; Rudan I; Hastie ND; Vitart V; Haley CS
    G3 (Bethesda); 2012 Sep; 2(9):1067-75. PubMed ID: 22973544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple testing in genome-wide association studies via hidden Markov models.
    Wei Z; Sun W; Wang K; Hakonarson H
    Bioinformatics; 2009 Nov; 25(21):2802-8. PubMed ID: 19654115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment of SNPs in Functional Categories Reveals Genes Affecting Complex Traits.
    Zhao H; Fan D; Nyholt DR; Yang Y
    Hum Mutat; 2016 Aug; 37(8):820-6. PubMed ID: 27113629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNP selection and classification of genome-wide SNP data using stratified sampling random forests.
    Wu Q; Ye Y; Liu Y; Ng MK
    IEEE Trans Nanobioscience; 2012 Sep; 11(3):216-27. PubMed ID: 22987127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting signals in gene-based association studies via efficient SNP selection.
    Wu C; Cui Y
    Brief Bioinform; 2014 Mar; 15(2):279-91. PubMed ID: 23325548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association test based on SNP set: logistic kernel machine based test vs. principal component analysis.
    Zhao Y; Chen F; Zhai R; Lin X; Diao N; Christiani DC
    PLoS One; 2012; 7(9):e44978. PubMed ID: 23028716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide association study combined with biological context can reveal more disease-related SNPs altering microRNA target seed sites.
    Wu D; Yang G; Zhang L; Xue J; Wen Z; Li M
    BMC Genomics; 2014 Aug; 15(1):669. PubMed ID: 25106527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases.
    Lin PL; Yu YW; Chung RH
    PLoS One; 2016; 11(9):e0162910. PubMed ID: 27622767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene-Gene Interactions Detection Using a Two-stage Model.
    Wang Z; Sul JH; Snir S; Lozano JA; Eskin E
    J Comput Biol; 2015 Jun; 22(6):563-76. PubMed ID: 25871811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.