These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25976018)

  • 1. An approach for patient-specific multi-domain vascular mesh generation featuring spatially varying wall thickness modeling.
    Raut SS; Liu P; Finol EA
    J Biomech; 2015 Jul; 48(10):1972-81. PubMed ID: 25976018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-hexahedral structured meshing for image-based computational vascular modeling.
    De Santis G; De Beule M; Van Canneyt K; Segers P; Verdonck P; Verhegghe B
    Med Eng Phys; 2011 Dec; 33(10):1318-25. PubMed ID: 21763174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of spatial modulation of magnetization (SPAMM) to children: the effect of image resolution on tagging pattern.
    Haselgrove JC; Fogel MA
    J Cardiovasc Magn Reson; 2005; 7(2):433-40. PubMed ID: 15881526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computation for biomechanical analysis of aortic aneurysms: the importance of computational grid.
    Alkhatib F; Wittek A; Zwick BF; Bourantas GC; Miller K
    Comput Methods Biomech Biomed Engin; 2024 Jun; 27(8):994-1010. PubMed ID: 37264784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions.
    Auer M; Gasser TC
    IEEE Trans Med Imaging; 2010 Apr; 29(4):1022-8. PubMed ID: 20335091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abdominal aortic aneurysm: from clinical imaging to realistic replicas.
    de Galarreta SR; Aitor C; Antón R; Finol EA
    J Biomech Eng; 2014 Jan; 136(1):014502. PubMed ID: 24190650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a robust method for quantification of three-dimensional growth of the thoracic aorta using deformable image registration.
    Bian Z; Zhong J; Dominic J; Christensen GE; Hatt CR; Burris NS
    Med Phys; 2022 Apr; 49(4):2514-2530. PubMed ID: 35106769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm.
    Reeps C; Gee M; Maier A; Gurdan M; Eckstein HH; Wall WA
    J Vasc Surg; 2010 Mar; 51(3):679-88. PubMed ID: 20206812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness.
    Scotti CM; Shkolnik AD; Muluk SC; Finol EA
    Biomed Eng Online; 2005 Nov; 4():64. PubMed ID: 16271141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducibility of deriving parameters of AAA rupture risk from patient-specific 3D finite element models.
    Hyhlik-Dürr A; Krieger T; Geisbüsch P; Kotelis D; Able T; Böckler D
    J Endovasc Ther; 2011 Jun; 18(3):289-98. PubMed ID: 21679063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiovascular and lung mesh generation based on centerlines.
    Marchandise E; Geuzaine C; Remacle JF
    Int J Numer Method Biomed Eng; 2013 Jun; 29(6):665-82. PubMed ID: 23606344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation of Intraluminal Thrombus Deposition, Biomechanics, and Hemodynamics with Surface Growth and Rupture in Abdominal Aortic Aneurysm-Application in a Clinical Paradigm.
    Metaxa E; Tzirakis K; Kontopodis N; Ioannou CV; Papaharilaou Y
    Ann Vasc Surg; 2018 Jan; 46():357-366. PubMed ID: 28887252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Methodology for Verifying Abdominal Aortic Aneurysm Wall Stress.
    Ruiz de Galarreta S; Cazón A; Antón R; Finol EA
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27636678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Merging of intersecting triangulations for finite element modeling.
    Cebral JR; Löhner R; Choyke PL; Yim PJ
    J Biomech; 2001 Jun; 34(6):815-9. PubMed ID: 11470121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-quality mesh generation for human hip based on ideal element size: methods and evaluation.
    Wang M; Gao J; Wang X
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):212-220. PubMed ID: 29058486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating smooth surface meshes from multi-region medical images.
    d'Otreppe V; Boman R; Ponthot JP
    Int J Numer Method Biomed Eng; 2012; 28(6-7):642-60. PubMed ID: 25364843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesh adaptation for improving elasticity reconstruction using the FEM inverse problem.
    Goksel O; Eskandari H; Salcudean SE
    IEEE Trans Med Imaging; 2013 Feb; 32(2):408-18. PubMed ID: 23192522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of in vivo mechanical properties of the aortic wall: A multi-resolution direct search approach.
    Liu M; Liang L; Sun W
    J Mech Behav Biomed Mater; 2018 Jan; 77():649-659. PubMed ID: 29101897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-element modeling of the hemodynamics of stented aneurysms.
    Stuhne GR; Steinman DA
    J Biomech Eng; 2004 Jun; 126(3):382-7. PubMed ID: 15341176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.