These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 25976394)
1. Data-driven signal-resolving approaches of infrared spectra to explore the macroscopic and microscopic spatial distribution of organic and inorganic compounds in plant. Chen JB; Sun SQ; Zhou Q Anal Bioanal Chem; 2015 Jul; 407(19):5695-706. PubMed ID: 25976394 [TBL] [Abstract][Full Text] [Related]
2. Application of two-dimensional correlation spectroscopy to chemometrics: self-modeling curve resolution analysis of spectral data sets. Jung Mee Y; Kim Bin S; Noda I Appl Spectrosc; 2003 Nov; 57(11):1376-80. PubMed ID: 14658151 [TBL] [Abstract][Full Text] [Related]
4. Direct observation of bulk and surface chemical morphologies of Ginkgo biloba leaves by Fourier transform mid- and near-infrared microspectroscopic imaging. Chen J; Sun S; Zhou Q Anal Bioanal Chem; 2013 Nov; 405(29):9385-400. PubMed ID: 24091737 [TBL] [Abstract][Full Text] [Related]
5. [A novel method for the determination of inorganic ions in complex plant samples by near infrared spectroscopy]. Wang GQ; Wang F; Chen D; Su QD; Shao XG Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Dec; 24(12):1540-2. PubMed ID: 15828321 [TBL] [Abstract][Full Text] [Related]
6. Main inorganic component measurement of seawater using near-infrared spectroscopy. Chen JY; Matsunaga R; Ishikawa K; Zhang H Appl Spectrosc; 2003 Nov; 57(11):1399-406. PubMed ID: 14658155 [TBL] [Abstract][Full Text] [Related]
7. Improved methods for performing multivariate analysis and deriving background spectra in atmospheric open-path FT-IR monitoring. Hong D; Cho S Appl Spectrosc; 2003 Mar; 57(3):299-308. PubMed ID: 14658622 [TBL] [Abstract][Full Text] [Related]
8. Principal component analysis based interconversion between infrared and near-infrared spectra for the study of thermal-induced weak interaction changes of poly(N-isopropylacrylamide). Zhang L; Noda I; Wu Y Appl Spectrosc; 2009 Jun; 63(6):694-9. PubMed ID: 19531297 [TBL] [Abstract][Full Text] [Related]
9. Chemical morphology of Areca nut characterized directly by Fourier transform near-infrared and mid-infrared microspectroscopic imaging in reflection modes. Chen JB; Sun SQ; Zhou Q Food Chem; 2016 Dec; 212():469-75. PubMed ID: 27374557 [TBL] [Abstract][Full Text] [Related]
10. [Processing GC-FTIR by the blind source separation]. Yao ZX; Huang H; Liu HB Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Aug; 26(8):1432-6. PubMed ID: 17058939 [TBL] [Abstract][Full Text] [Related]
11. [Structure analysis of benzoic medicines by near infrared and two dimensional correlation spectroscopy]. Liu H; Xiang BR; Qu LB; Xu JP Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Feb; 27(2):265-9. PubMed ID: 17514952 [TBL] [Abstract][Full Text] [Related]
13. Detection of starch adulteration in onion powder by FT-NIR and FT-IR spectroscopy. Lohumi S; Lee S; Lee WH; Kim MS; Mo C; Bae H; Cho BK J Agric Food Chem; 2014 Sep; 62(38):9246-51. PubMed ID: 25188555 [TBL] [Abstract][Full Text] [Related]
14. [Analysis of the harvest seasons of Scutellaria baicalensis Georgi by tri-step identification of infrared spectroscopy and principal component analysis]. Liu SL; Chen JB; Zhou Q; Sun SQ; Li SZ Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Oct; 32(10):2669-73. PubMed ID: 23285862 [TBL] [Abstract][Full Text] [Related]
15. Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics. Cao Z; Wang Z; Shang Z; Zhao J PLoS One; 2017; 12(2):e0172359. PubMed ID: 28207900 [TBL] [Abstract][Full Text] [Related]
16. Use of genetic algorithms with multivariate regression for determination of gelatine in historic papers based on FT-IR and NIR spectral data. Cséfalvayová L; Pelikan M; Kralj Cigić I; Kolar J; Strlic M Talanta; 2010 Oct; 82(5):1784-90. PubMed ID: 20875577 [TBL] [Abstract][Full Text] [Related]
17. Rapid discrimination of three marine fish surimi by Tri-step infrared spectroscopy combined with Principle Component Regression. Liu Y; Hu W; Guo XX; Wang XC; Sun SQ; Xu CH Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():516-22. PubMed ID: 25978019 [TBL] [Abstract][Full Text] [Related]
18. Extended multiplicative signal correction as a tool for separation and characterization of physical and chemical information in Fourier transform infrared microscopy images of cryo-sections of beef loin. Kohler A; Kirschner C; Oust A; Martens H Appl Spectrosc; 2005 Jun; 59(6):707-16. PubMed ID: 16053536 [TBL] [Abstract][Full Text] [Related]
19. [Artificial neural network for the identification of infrared spectra]. Li Y; Wang J; Wang L Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Aug; 20(4):477-9. PubMed ID: 12945353 [TBL] [Abstract][Full Text] [Related]
20. [Measurement of borneol based on near infrared spectroscopy]. Gu XY; Wang Y; Xu KX; Li L; Ling NS Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Feb; 24(2):155-7. PubMed ID: 15769004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]