These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25976746)

  • 41. Genome history in the symbiotic hybrid Euglena gracilis.
    Ahmadinejad N; Dagan T; Martin W
    Gene; 2007 Nov; 402(1-2):35-9. PubMed ID: 17716833
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs.
    Yang JB; Li DZ; Li HT
    Mol Ecol Resour; 2014 Sep; 14(5):1024-31. PubMed ID: 24620934
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chloroplast gene arrangement variation within a closely related group of green algae (Trebouxiophyceae, Chlorophyta).
    Letsch MR; Lewis LA
    Mol Phylogenet Evol; 2012 Sep; 64(3):524-32. PubMed ID: 22659018
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chloroplast genome sequences from total DNA for plant identification.
    Nock CJ; Waters DL; Edwards MA; Bowen SG; Rice N; Cordeiro GM; Henry RJ
    Plant Biotechnol J; 2011 Apr; 9(3):328-33. PubMed ID: 20796245
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Complete chloroplast genome of green tide algae Ulva flexuosa (Ulvophyceae, Chlorophyta) with comparative analysis.
    Cai C; Wang L; Zhou L; He P; Jiao B
    PLoS One; 2017; 12(9):e0184196. PubMed ID: 28863197
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes.
    Cosner ME; Raubeson LA; Jansen RK
    BMC Evol Biol; 2004 Aug; 4():27. PubMed ID: 15324459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family.
    Lin CS; Chen JJ; Huang YT; Chan MT; Daniell H; Chang WJ; Hsu CT; Liao DC; Wu FH; Lin SY; Liao CF; Deyholos MK; Wong GK; Albert VA; Chou ML; Chen CY; Shih MC
    Sci Rep; 2015 Mar; 5():9040. PubMed ID: 25761566
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa.
    Vesteg M; Hadariová L; Horváth A; Estraño CE; Schwartzbach SD; Krajčovič J
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1701-1721. PubMed ID: 31095885
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The evolution of paralogous enzymes MAT and MATX within the Euglenida and beyond.
    Szabová J; Yubuki N; Leander BS; Triemer RE; Hampl V
    BMC Evol Biol; 2014 Feb; 14():25. PubMed ID: 24517416
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phylogenetic analysis of chloroplast small-subunit rRNA genes of the genus Euglena Ehrenberg.
    Milanowski R; Zakryś B; Kwiatowski J
    Int J Syst Evol Microbiol; 2001 May; 51(Pt 3):773-781. PubMed ID: 11411697
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discovery of a new photosynthetic euglenoid in Poland: Euglena mazurica sp. nov. (Euglenales, Euglenaceae).
    Zakryś B; Jankowska K; Majerowicz A; Fells A; Łukomska-Kowalczyk M
    Protist; 2024 Apr; 175(2):126015. PubMed ID: 38301533
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phylogenetic origin of two Japanese Torreya taxa found in two regions with strongly contrasting snow depth.
    Aizawa M; Worth JRP
    J Plant Res; 2021 Sep; 134(5):907-919. PubMed ID: 33866439
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intraspecific variation in the structural organization and redundancy of chloroplast ribosomal DNA cistrons in Euglena gracilis.
    Wurtz EA; Buetow DE
    Curr Genet; 1981 Jul; 3(3):181-7. PubMed ID: 24190130
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Verdant: automated annotation, alignment and phylogenetic analysis of whole chloroplast genomes.
    McKain MR; Hartsock RH; Wohl MM; Kellogg EA
    Bioinformatics; 2017 Jan; 33(1):130-132. PubMed ID: 27634949
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extensive chloroplast genome rearrangement amongst three closely related Halamphora spp. (Bacillariophyceae), and evidence for rapid evolution as compared to land plants.
    Hamsher SE; Keepers KG; Pogoda CS; Stepanek JG; Kane NC; Kociolek JP
    PLoS One; 2019; 14(7):e0217824. PubMed ID: 31269054
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Action of Nalidixic Acid on Chloroplast Replication in Euglena gracilis.
    Lyman H; Jupp AS; Larrinua I
    Plant Physiol; 1975 Feb; 55(2):390-2. PubMed ID: 16659089
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodiversity of autotrophic euglenids based on the group specific DNA metabarcoding approach.
    Jankowska K; Łukomska-Kowalczyk M; Milanowski R; Fells A; Zakryś B
    Protist; 2024 Jun; 175(3):126024. PubMed ID: 38452550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa.
    Simpson AG; Roger AJ
    Mol Phylogenet Evol; 2004 Jan; 30(1):201-12. PubMed ID: 15022770
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sequencing of Complete Chloroplast Genomes.
    Heinze B
    Methods Mol Biol; 2021; 2222():89-105. PubMed ID: 33301089
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Morphostasis in a novel eukaryote illuminates the evolutionary transition from phagotrophy to phototrophy: description of Rapaza viridis n. gen. et sp. (Euglenozoa, Euglenida).
    Yamaguchi A; Yubuki N; Leander BS
    BMC Evol Biol; 2012 Mar; 12():29. PubMed ID: 22401606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.