These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25976790)

  • 1. Role of plant polyphenols in acrylamide formation and elimination.
    Liu Y; Wang P; Chen F; Yuan Y; Zhu Y; Yan H; Hu X
    Food Chem; 2015 Nov; 186():46-53. PubMed ID: 25976790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination.
    Cai Y; Zhang Z; Jiang S; Yu M; Huang C; Qiu R; Zou Y; Zhang Q; Ou S; Zhou H; Wang Y; Bai W; Li Y
    J Hazard Mater; 2014 Mar; 268():1-5. PubMed ID: 24462985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of curcumin in the conversion of asparagine into acrylamide during heating.
    Hamzalıoğlu A; Mogol BA; Lumaga RB; Fogliano V; Gökmen V
    Amino Acids; 2013 Jun; 44(6):1419-26. PubMed ID: 22143430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epicatechin-Promoted Formation of Acrylamide from 3-Aminopropionamide Via Postoxidative Reaction of B-Ring.
    Qi Y; Cheng J; Ding W; Wang L; Qian H; Qi X; Wu G; Zhu L; Yang T; Xu B; Zhang H
    J Agric Food Chem; 2024 Jul; 72(27):15301-15310. PubMed ID: 38917412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide.
    Xu C; Yagiz Y; Marshall S; Li Z; Simonne A; Lu J; Marshall MR
    Food Chem; 2015 Sep; 182():200-8. PubMed ID: 25842328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artichoke (Cynara cardunculus L. var. scolymus) waste as a natural source of carbonyl trapping and antiglycative agents.
    Maietta M; Colombo R; Lavecchia R; Sorrenti M; Zuorro A; Papetti A
    Food Res Int; 2017 Oct; 100(Pt 1):780-790. PubMed ID: 28873750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide.
    Granvogl M; Schieberle P
    J Agric Food Chem; 2006 Aug; 54(16):5933-8. PubMed ID: 16881697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage.
    Oral RA; Dogan M; Sarioglu K
    Food Chem; 2014 Jan; 142():423-9. PubMed ID: 24001861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of 3-aminopropionamide and 3-alkylaminopropionamides into acrylamide in model systems.
    Zamora R; Delgado RM; Hidalgo FJ
    Mol Nutr Food Res; 2009 Dec; 53(12):1512-20. PubMed ID: 19746374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acrylamide formation and antioxidant activity in coffee during roasting - A systematic study.
    Schouten MA; Tappi S; Angeloni S; Cortese M; Caprioli G; Vittori S; Romani S
    Food Chem; 2021 May; 343():128514. PubMed ID: 33187741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spray-dried olive mill wastewater reduces Maillard reaction in cookies model system.
    Troise AD; Colantuono A; Fiore A
    Food Chem; 2020 Apr; 323():126793. PubMed ID: 32334301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Formation of Acrylamide from and Its Reduction by 3-Aminopropanamide Occur Simultaneously During Thermal Treatment.
    Wu H; Zheng J; Zhang G; Huang C; Ou S
    J Food Sci; 2018 Oct; 83(10):2662-2668. PubMed ID: 30229907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of polyphenols on volatile profile and acrylamide formation in a model wheat bread system.
    Mildner-Szkudlarz S; Różańska M; Piechowska P; Waśkiewicz A; Zawirska-Wojtasiak R
    Food Chem; 2019 Nov; 297():125008. PubMed ID: 31253286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antioxidant and cytoprotective properties of partridgeberry polyphenols.
    Bhullar KS; Rupasinghe HP
    Food Chem; 2015 Feb; 168():595-605. PubMed ID: 25172753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitation of 3-aminopropionamide in potatoes-a minor but potent precursor in acrylamide formation.
    Granvogl M; Jezussek M; Koehler P; Schieberle P
    J Agric Food Chem; 2004 Jul; 52(15):4751-7. PubMed ID: 15264910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model studies on the role of 5-hydroxymethyl-2-furfural in acrylamide formation from asparagine.
    Gökmen V; Kocadağlı T; Göncüoğlu N; Mogol BA
    Food Chem; 2012 May; 132(1):168-74. PubMed ID: 26434276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-Hydroxymethylfurfural accumulation plays a critical role on acrylamide formation in coffee during roasting as confirmed by multiresponse kinetic modelling.
    Hamzalıoğlu A; Gökmen V
    Food Chem; 2020 Jul; 318():126467. PubMed ID: 32145542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of rapeseed press-cake on Maillard reaction in a cookie model system.
    Troise AD; Wilkin JD; Fiore A
    Food Chem; 2018 Mar; 243():365-372. PubMed ID: 29146351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors that influence the acrylamide content of heated foods.
    Rydberg P; Eriksson S; Tareke E; Karlsson P; Ehrenberg L; Törnqvist M
    Adv Exp Med Biol; 2005; 561():317-28. PubMed ID: 16438308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food polyphenols and Maillard reaction: regulation effect and chemical mechanism.
    Han Z; Zhu M; Wan X; Zhai X; Ho CT; Zhang L
    Crit Rev Food Sci Nutr; 2024; 64(15):4904-4920. PubMed ID: 36382683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.