These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 25976974)

  • 1. Sequencing and expression analysis of salt-responsive miRNAs and target genes in the halophyte smooth cordgrass (Spartina alternifolia Loisel).
    Zandkarimi H; Bedre R; Solis J; Mangu V; Baisakh N
    Mol Biol Rep; 2015 Aug; 42(8):1341-50. PubMed ID: 25976974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential Expression of miRNAs Under Salt Stress in Spartina alterniflora Leaf Tissues.
    Qin Z; Chen J; Jin L; Duns GJ; Ouyang P
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1554-61. PubMed ID: 26353690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity.
    Bedre R; Mangu VR; Srivastava S; Sanchez LE; Baisakh N
    BMC Genomics; 2016 Aug; 17(1):657. PubMed ID: 27542721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ -ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel.
    Baisakh N; RamanaRao MV; Rajasekaran K; Subudhi P; Janda J; Galbraith D; Vanier C; Pereira A
    Plant Biotechnol J; 2012 May; 10(4):453-64. PubMed ID: 22284568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.).
    Baisakh N; Subudhi PK; Varadwaj P
    Funct Integr Genomics; 2008 Aug; 8(3):287-300. PubMed ID: 18305970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small RNA deep sequencing reveals the important role of microRNAs in the halophyte Halostachys caspica.
    Yang R; Zeng Y; Yi X; Zhao L; Zhang Y
    Plant Biotechnol J; 2015 Apr; 13(3):395-408. PubMed ID: 25832169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants.
    Gharat SA; Shaw BP
    BMC Plant Biol; 2015 Dec; 15():301. PubMed ID: 26714456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of growth, antioxidants and gene expression in smooth cordgrass (Spartina alterniflora) to various levels of salinity.
    Courtney AJ; Xu J; Xu Y
    Plant Physiol Biochem; 2016 Feb; 99():162-70. PubMed ID: 26760954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Full-Length Transcriptome of Spartina alterniflora Reveals the Complexity of High Salt Tolerance in Monocotyledonous Halophyte.
    Ye W; Wang T; Wei W; Lou S; Lan F; Zhu S; Li Q; Ji G; Lin C; Wu X; Ma L
    Plant Cell Physiol; 2020 May; 61(5):882-896. PubMed ID: 32044993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.).
    Sun X; Xu L; Wang Y; Yu R; Zhu X; Luo X; Gong Y; Wang R; Limera C; Zhang K; Liu L
    BMC Genomics; 2015 Mar; 16(1):197. PubMed ID: 25888374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae).
    Ferreira de Carvalho J; Poulain J; Da Silva C; Wincker P; Michon-Coudouel S; Dheilly A; Naquin D; Boutte J; Salmon A; Ainouche M
    Heredity (Edinb); 2013 Feb; 110(2):181-93. PubMed ID: 23149455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An actin-depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice.
    Sengupta S; Mangu V; Sanchez L; Bedre R; Joshi R; Rajasekaran K; Baisakh N
    Plant Biotechnol J; 2019 Jan; 17(1):188-205. PubMed ID: 29851294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea.
    Feng J; Wang J; Fan P; Jia W; Nie L; Jiang P; Chen X; Lv S; Wan L; Chang S; Li S; Li Y
    BMC Plant Biol; 2015 Feb; 15():63. PubMed ID: 25848810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide identification and characterization of Eutrema salsugineum microRNAs for salt tolerance.
    Wu Y; Guo J; Cai Y; Gong X; Xiong X; Qi W; Pang Q; Wang X; Wang Y
    Physiol Plant; 2016 Aug; 157(4):453-68. PubMed ID: 26806325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of a nascent polypeptide associated complex gene (SaβNAC) of Spartina alterniflora improves tolerance to salinity and drought in transgenic Arabidopsis.
    Karan R; Subudhi PK
    Biochem Biophys Res Commun; 2012 Aug; 424(4):747-52. PubMed ID: 22809508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo transcriptome assembly and analysis of Phragmites karka, an invasive halophyte, to study the mechanism of salinity stress tolerance.
    Nayak SS; Pradhan S; Sahoo D; Parida A
    Sci Rep; 2020 Mar; 10(1):5192. PubMed ID: 32251358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion content, antioxidant enzyme activity and transcriptional response under salt stress and recovery condition in the halophyte grass Aeluropus littoralis.
    Hashemipetroudi SH; Ahmadian G; Fatemi F; Nematzadeh G; Yamchi A; Kuhlmann M
    BMC Res Notes; 2022 Jun; 15(1):201. PubMed ID: 35690800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic mining of salt-tolerant genes in halophyte-Zoysia matrella through cDNA expression library screening.
    Chen Y; Zong J; Tan Z; Li L; Hu B; Chen C; Chen J; Liu J
    Plant Physiol Biochem; 2015 Apr; 89():44-52. PubMed ID: 25689412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress.
    Joshi R; Ramanarao MV; Baisakh N
    Plant Physiol Biochem; 2013 Apr; 65():61-6. PubMed ID: 23416497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.).
    Wang M; Wang Q; Zhang B
    Gene; 2013 Nov; 530(1):26-32. PubMed ID: 23948080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.