These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25977061)

  • 1. Predicting anthocyanins' isothermal and non-isothermal degradation with the endpoints method.
    Peleg M; Kim AD; Normand MD
    Food Chem; 2015 Nov; 187():537-44. PubMed ID: 25977061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the degradation kinetics of ascorbic acid.
    Peleg M; Normand MD; Dixon WR; Goulette TR
    Crit Rev Food Sci Nutr; 2018 Jun; 58(9):1478-1494. PubMed ID: 27892705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the heat resistance parameters of bacterial spores from their survival ratios at the end of UHT and other heat treatments.
    Peleg M; Normand MD; Corradini MG; Van Asselt AJ; De Jong P; Ter Steeg PF
    Crit Rev Food Sci Nutr; 2008 Aug; 48(7):634-48. PubMed ID: 18663615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse method to estimate kinetic degradation parameters of grape anthocyanins in wheat flour under simultaneously changing temperature and moisture.
    Lai KP; Dolan KD; Ng PK
    J Food Sci; 2009 Jun; 74(5):E241-9. PubMed ID: 19646039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo modelling of non-isothermal degradation of two cyanidin-based anthocyanins in aqueous system at high temperatures and its impact on antioxidant capacities.
    Sui X; Zhou W
    Food Chem; 2014 Apr; 148():342-50. PubMed ID: 24262567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting chemical degradation during storage from two successive concentration ratios: Theoretical investigation.
    Peleg M; Normand MD
    Food Res Int; 2015 Sep; 75():174-181. PubMed ID: 28454945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of aerobic vitamin C loss kinetics during commercial heat preservation and storage.
    Peleg M
    Food Res Int; 2017 Dec; 102():246-255. PubMed ID: 29195945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of anthocyanin degradation and browning in reconstituted blackberry juice treated at high temperatures (100-180 degrees C).
    Jiménez N; Bohuon P; Lima J; Dornier M; Vaillant F; Pérez AM
    J Agric Food Chem; 2010 Feb; 58(4):2314-22. PubMed ID: 20108918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure and temperature effects on degradation kinetics and storage stability of total anthocyanins in blueberry juice.
    Buckow R; Kastell A; Terefe NS; Versteeg C
    J Agric Food Chem; 2010 Sep; 58(18):10076-84. PubMed ID: 20735132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models.
    Cisse M; Vaillant F; Acosta O; Dhuique-Mayer C; Dornier M
    J Agric Food Chem; 2009 Jul; 57(14):6285-91. PubMed ID: 19545116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculating microbial survival parameters and predicting survival curves from non-isothermal inactivation data.
    Peleg M; Normand MD
    Crit Rev Food Sci Nutr; 2004; 44(6):409-18. PubMed ID: 15615424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal degradation of grape marc polyphenols.
    Sólyom K; Solá R; Cocero MJ; Mato RB
    Food Chem; 2014 Sep; 159():361-6. PubMed ID: 24767067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of the non-isothermal inactivation patterns of microbes having sigmoidal isothermal semi-logarithmic survival curves.
    Peleg M
    Crit Rev Food Sci Nutr; 2003; 43(6):645-58. PubMed ID: 14669882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation kinetics of anthocyanins in acerola pulp: comparison between ohmic and conventional heat treatment.
    Mercali GD; Jaeschke DP; Tessaro IC; Marczak LD
    Food Chem; 2013 Jan; 136(2):853-7. PubMed ID: 23122136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating non-isothermal bacterial growth in foods from isothermal experimental data.
    Corradini MG; Peleg M
    J Appl Microbiol; 2005; 99(1):187-200. PubMed ID: 15960679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal degradation of anthocyanins from purple potato (cv. Purple Majesty) and impact on antioxidant capacity.
    Nayak B; Berrios Jde J; Powers JR; Tang J
    J Agric Food Chem; 2011 Oct; 59(20):11040-9. PubMed ID: 21800848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confidence intervals for modeling anthocyanin retention in grape pomace during nonisothermal heating.
    Mishra DK; Dolan KD; Yang L
    J Food Sci; 2008 Jan; 73(1):E9-15. PubMed ID: 18211351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactive software for estimating the efficacy of non-isothermal heat preservation processes.
    Peleg M; Normand MD; Corradini MG
    Int J Food Microbiol; 2008 Aug; 126(1-2):250-7. PubMed ID: 18571264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of an organism's inactivation patterns from three single survival ratios determined at the end of three non-isothermal heat treatments.
    Corradini MG; Normand MD; Peleg M
    Int J Food Microbiol; 2008 Aug; 126(1-2):98-111. PubMed ID: 18579249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release and degradation of anthocyanins and phenolics from blueberry pomace during thermal acid hydrolysis and dry heating.
    Bener M; Shen Y; Apak R; Finley JW; Xu Z
    J Agric Food Chem; 2013 Jul; 61(27):6643-9. PubMed ID: 23768160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.