These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 25977297)
1. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores. Zambrano R; Conchillo-Sole O; Iglesias V; Illa R; Rousseau F; Schymkowitz J; Sabate R; Daura X; Ventura S Nucleic Acids Res; 2015 Jul; 43(W1):W331-7. PubMed ID: 25977297 [TBL] [Abstract][Full Text] [Related]
2. Amyloid cores in prion domains: Key regulators for prion conformational conversion. Fernández MR; Batlle C; Gil-García M; Ventura S Prion; 2017 Jan; 11(1):31-39. PubMed ID: 28281928 [TBL] [Abstract][Full Text] [Related]
3. Emergence and evolution of yeast prion and prion-like proteins. An L; Fitzpatrick D; Harrison PM BMC Evol Biol; 2016 Jan; 16():24. PubMed ID: 26809710 [TBL] [Abstract][Full Text] [Related]
4. What makes a protein sequence a prion? Sabate R; Rousseau F; Schymkowitz J; Ventura S PLoS Comput Biol; 2015 Jan; 11(1):e1004013. PubMed ID: 25569335 [TBL] [Abstract][Full Text] [Related]
6. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Michelitsch MD; Weissman JS Proc Natl Acad Sci U S A; 2000 Oct; 97(22):11910-5. PubMed ID: 11050225 [TBL] [Abstract][Full Text] [Related]
7. A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes. Harrison PM; Gerstein M Genome Biol; 2003; 4(6):R40. PubMed ID: 12801414 [TBL] [Abstract][Full Text] [Related]
8. Controlling the prion propensity of glutamine/asparagine-rich proteins. Paul KR; Ross ED Prion; 2015; 9(5):347-54. PubMed ID: 26555096 [TBL] [Abstract][Full Text] [Related]
9. A bioinformatics method for identifying Q/N-rich prion-like domains in proteins. Ross ED; Maclea KS; Anderson C; Ben-Hur A Methods Mol Biol; 2013; 1017():219-28. PubMed ID: 23719919 [TBL] [Abstract][Full Text] [Related]
10. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains. Shattuck JE; Waechter AC; Ross ED Prion; 2017 Jul; 11(4):249-264. PubMed ID: 28665753 [TBL] [Abstract][Full Text] [Related]
11. A non-Q/N-rich prion domain of a foreign prion, [Het-s], can propagate as a prion in yeast. Taneja V; Maddelein ML; Talarek N; Saupe SJ; Liebman SW Mol Cell; 2007 Jul; 27(1):67-77. PubMed ID: 17612491 [TBL] [Abstract][Full Text] [Related]
14. Compositional determinants of prion formation in yeast. Toombs JA; McCarty BR; Ross ED Mol Cell Biol; 2010 Jan; 30(1):319-32. PubMed ID: 19884345 [TBL] [Abstract][Full Text] [Related]
15. Amyloid Properties of Asparagine and Glutamine in Prion-like Proteins. Zhang Y; Man VH; Roland C; Sagui C ACS Chem Neurosci; 2016 May; 7(5):576-87. PubMed ID: 26911543 [TBL] [Abstract][Full Text] [Related]
16. Amyloids or prions? That is the question. Sabate R; Rousseau F; Schymkowitz J; Batlle C; Ventura S Prion; 2015; 9(3):200-6. PubMed ID: 26039159 [TBL] [Abstract][Full Text] [Related]
17. The effects of amino acid composition on yeast prion formation and prion domain interactions. Ross ED; Toombs JA Prion; 2010; 4(2):60-5. PubMed ID: 20495349 [TBL] [Abstract][Full Text] [Related]
18. Amyloids of shuffled prion domains that form prions have a parallel in-register beta-sheet structure. Shewmaker F; Ross ED; Tycko R; Wickner RB Biochemistry; 2008 Apr; 47(13):4000-7. PubMed ID: 18324784 [TBL] [Abstract][Full Text] [Related]