These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25977428)

  • 1. Complete Genome Sequences of Caldicellulosiruptor sp. Strain Rt8.B8, Caldicellulosiruptor sp. Strain Wai35.B1, and "Thermoanaerobacter cellulolyticus".
    Lee LL; Izquierdo JA; Blumer-Schuette SE; Zurawski JV; Conway JM; Cottingham RW; Huntemann M; Copeland A; Chen IM; Kyrpides N; Markowitz V; Palaniappan K; Ivanova N; Mikhailova N; Ovchinnikova G; Andersen E; Pati A; Stamatis D; Reddy TB; Shapiro N; Nordberg HP; Cantor MN; Hua SX; Woyke T; Kelly RM
    Genome Announc; 2015 May; 3(3):. PubMed ID: 25977428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses.
    Lee LL; Blumer-Schuette SE; Izquierdo JA; Zurawski JV; Loder AJ; Conway JM; Elkins JG; Podar M; Clum A; Jones PC; Piatek MJ; Weighill DA; Jacobson DA; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete Genome Sequences of Caldicellulosiruptor acetigenus DSM 7040, Caldicellulosiruptor morganii DSM 8990 (RT8.B8), and Caldicellulosiruptor naganoensis DSM 8991 (NA10).
    Bing RG; Willard DJ; Manesh MJH; Laemthong T; Crosby JR; Adams MWW; Kelly RM
    Microbiol Resour Announc; 2023 Mar; 12(3):e0129222. PubMed ID: 36722965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.
    Svetlitchnyi VA; Kensch O; Falkenhan DA; Korseska SG; Lippert N; Prinz M; Sassi J; Schickor A; Curvers S
    Biotechnol Biofuels; 2013 Feb; 6(1):31. PubMed ID: 23448304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic
    Lee LL; Hart WS; Lunin VV; Alahuhta M; Bomble YJ; Himmel ME; Blumer-Schuette SE; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a thermostable cellobiose 2-epimerase from Caldicellulosiruptor sp. Rt8.B8 and production of epilactose using Bacillus subtilis.
    Liangfei L; Yafeng Z; Kai X; Zheng X
    J Sci Food Agric; 2022 Jan; 102(1):85-94. PubMed ID: 34031874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs.
    Miroshnichenko ML; Kublanov IV; Kostrikina NA; Tourova TP; Kolganova TV; Birkeland NK; Bonch-Osmolovskaya EA
    Int J Syst Evol Microbiol; 2008 Jun; 58(Pt 6):1492-6. PubMed ID: 18523201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus.
    Blumer-Schuette SE; Ozdemir I; Mistry D; Lucas S; Lapidus A; Cheng JF; Goodwin LA; Pitluck S; Land ML; Hauser LJ; Woyke T; Mikhailova N; Pati A; Kyrpides NC; Ivanova N; Detter JC; Walston-Davenport K; Han S; Adams MW; Kelly RM
    J Bacteriol; 2011 Mar; 193(6):1483-4. PubMed ID: 21216991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An extremely thermophilic anaerobic bacterium Caldicellulosiruptor sp. F32 exhibits distinctive properties in growth and xylanases during xylan hydrolysis.
    Ying Y; Meng D; Chen X; Li F
    Enzyme Microb Technol; 2013 Aug; 53(3):194-9. PubMed ID: 23830462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of 'Anaerocellum thermophilum' strain DSM 6725 as Caldicellulosiruptor bescii sp. nov.
    Yang SJ; Kataeva I; Wiegel J; Yin Y; Dam P; Xu Y; Westpheling J; Adams MWW
    Int J Syst Evol Microbiol; 2010 Sep; 60(Pt 9):2011-2015. PubMed ID: 19801388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel SfaNI-like restriction-modification system in Caldicellulosiruptor extents the genetic engineering toolbox for this genus.
    Swinnen S; Zurek C; Krämer M; Heger RM; Domeyer JE; Ziegler J; Svetlitchnyi VA; Läufer A
    PLoS One; 2022; 17(12):e0279562. PubMed ID: 36580476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium.
    Rainey FA; Donnison AM; Janssen PH; Saul D; Rodrigo A; Bergquist PL; Daniel RM; Stackebrandt E; Morgan HW
    FEMS Microbiol Lett; 1994 Jul; 120(3):263-6. PubMed ID: 8076802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a new obligately anaerobic thermophile, Thermoanaerobacter wiegelii sp. nov.
    Cook GM; Rainey FA; Patel BK; Morgan HW
    Int J Syst Bacteriol; 1996 Jan; 46(1):123-7. PubMed ID: 8573487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whither the genus
    Bing RG; Willard DJ; Crosby JR; Adams MWW; Kelly RM
    Front Microbiol; 2023; 14():1212538. PubMed ID: 37601363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo synergistic activity of a CAZyme cassette from Acidothermus cellulolyticus significantly improves the cellulolytic activity of the C. bescii exoproteome.
    Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J
    Biotechnol Bioeng; 2017 Nov; 114(11):2474-2480. PubMed ID: 28650071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depiction of carbohydrate-active enzyme diversity in Caldicellulosiruptor sp. F32 at the genome level reveals insights into distinct polysaccharide degradation features.
    Meng DD; Ying Y; Zhang KD; Lu M; Li FL
    Mol Biosyst; 2015 Nov; 11(11):3164-73. PubMed ID: 26392378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous expression of family 10 xylanases from Acidothermus cellulolyticus enhances the exoproteome of Caldicellulosiruptor bescii and growth on xylan substrates.
    Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J
    Biotechnol Biofuels; 2016; 9(1):176. PubMed ID: 27555882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.
    Conway JM; McKinley BS; Seals NL; Hernandez D; Khatibi PA; Poudel S; Giannone RJ; Hettich RL; Williams-Rhaesa AM; Lipscomb GL; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic and physiological analyses reveal that extremely thermophilic Caldicellulosiruptor changbaiensis deploys uncommon cellulose attachment mechanisms.
    Khan AMAM; Mendoza C; Hauk VJ; Blumer-Schuette SE
    J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1251-1263. PubMed ID: 31392469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caldicellulosiruptor changbaiensis sp. nov., a cellulolytic and hydrogen-producing bacterium from a hot spring.
    Bing W; Wang H; Zheng B; Zhang F; Zhu G; Feng Y; Zhang Z
    Int J Syst Evol Microbiol; 2015 Jan; 65(Pt 1):293-297. PubMed ID: 25342112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.