These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25977661)

  • 1. Plasmonic lens focused longitudinal field excitation for tip-enhanced Raman spectroscopy.
    Zhang M; Wang J
    Nanoscale Res Lett; 2015; 10():189. PubMed ID: 25977661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection.
    Zhang M; Wang J; Tian Q
    Opt Express; 2013 Apr; 21(8):9414-21. PubMed ID: 23609652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tip-Enhanced Raman Spectroscopy Based on Spiral Plasmonic Lens Excitation.
    Gu K; Sun M; Zhang Y
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AFM-Nano Manipulation of Plasmonic Molecules Used as "Nano-Lens" to Enhance Raman of Individual Nano-Objects.
    D'Orlando A; Bayle M; Louarn G; Humbert B
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon.
    Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC
    Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward High-Contrast Atomic Force Microscopy-Tip-Enhanced Raman Spectroscopy Imaging: Nanoantenna-Mediated Remote-Excitation on Sharp-Tip Silver Nanowire Probes.
    Ma X; Zhu Y; Yu N; Kim S; Liu Q; Apontti L; Xu D; Yan R; Liu M
    Nano Lett; 2019 Jan; 19(1):100-107. PubMed ID: 30512954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations.
    Hermann RJ; Gordon MJ
    Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gap surface plasmon polaritons enhanced by a plasmonic lens.
    Chul Kim H; Cheng X
    Opt Lett; 2011 Aug; 36(16):3082-4. PubMed ID: 21847167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing electromagnetic field gradient in tip-enhanced Raman spectroscopy with a perfect radially polarized beam.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2022 Jun; 30(12):21377-21385. PubMed ID: 36224858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy].
    Wu XB; Wang J; Wang R; Xu JY; Tian Q; Yu JY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2681-5. PubMed ID: 20038037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and plasmonic resonances on tip-enhanced Raman spectroscopy.
    Qiu X; Cheng Y; Sun M
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120360. PubMed ID: 34509891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tip-Enhanced Raman Spectroscopy with High-Order Fiber Vector Beam Excitation.
    Lu F; Huang T; Han L; Su H; Wang H; Liu M; Zhang W; Wang X; Mei T
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.
    Fang Y; Zhang Z; Chen L; Sun M
    Phys Chem Chem Phys; 2015 Jan; 17(2):783-94. PubMed ID: 25424492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model.
    Kitahama Y; Itoh T; Suzuki T
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():142-147. PubMed ID: 29339023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals.
    Mueller NS; Pfitzner E; Okamura Y; Gordeev G; Kusch P; Lange H; Heberle J; Schulz F; Reich S
    ACS Nano; 2021 Mar; 15(3):5523-5533. PubMed ID: 33667335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonant excitation of tip plasmons for tip-enhanced Raman SNOM.
    Festy F; Demming A; Richards D
    Ultramicroscopy; 2004 Aug; 100(3-4):437-41. PubMed ID: 15231336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental correlation of electric fields and Raman signals in SERS and TERS.
    Schultz ZD; Wang H; Kwasnieski DT; Marr JM
    Proc SPIE Int Soc Opt Eng; 2015 Aug; 9554():. PubMed ID: 26412927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallic nanosphere-assisted coupling ultrafast surface plasmon polaritons background-free tip nanofocusing.
    Meng C; Li W; Xie Z; Zhang L; Xu L; Gao F; Zhang W; Mei T; Zhao J
    Opt Lett; 2021 Nov; 46(22):5554-5557. PubMed ID: 34780404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in Tip-Enhanced Near-Field Raman Microscopy Using Nanoantennas.
    Shi X; Coca-López N; Janik J; Hartschuh A
    Chem Rev; 2017 Apr; 117(7):4945-4960. PubMed ID: 28212025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant, Plasmonic Raman Enhancement of α-6T Molecules Encapsulated in Carbon Nanotubes.
    Wasserroth S; Heeg S; Mueller NS; Kusch P; Hübner U; Gaufrès E; Tang NY; Martel R; Vijayaraghavan A; Reich S
    J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(16):10578-10585. PubMed ID: 32064011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.