These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25977661)

  • 21. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2021 Nov; 29(23):37515-37524. PubMed ID: 34808821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Note: tip enhanced Raman spectroscopy with objective scanner on opaque samples.
    Nicklaus M; Nauenheim C; Krayev A; Gavrilyuk V; Belyaev A; Ruediger A
    Rev Sci Instrum; 2012 Jun; 83(6):066102. PubMed ID: 22755668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tip-Enhanced Raman Spectroscopy with Picosecond Pulses.
    Klingsporn JM; Sonntag MD; Seideman T; Van Duyne RP
    J Phys Chem Lett; 2014 Jan; 5(1):106-10. PubMed ID: 26276188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy.
    Taguchi A; Yu J; Verma P; Kawata S
    Nanoscale; 2015 Nov; 7(41):17424-33. PubMed ID: 26439510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated plasmon-enhanced Raman scattering (iPERS) spectroscopy.
    Wang H; Li H; Xu S; Zhao B; Xu W
    Sci Rep; 2017 Nov; 7(1):14630. PubMed ID: 29116139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced subwavelength coupling and nano-focusing with optical fiber-plasmonic hybrid probe.
    Minn K; Howard Lee HW; Zhang Z
    Opt Express; 2019 Dec; 27(26):38098-38108. PubMed ID: 31878581
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation on tip enhanced Raman spectra of graphene.
    Li X; Liu Y; Zeng Z; Wang P; Fang Y; Zhang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 190():378-382. PubMed ID: 28950229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio.
    Jiang RH; Chen C; Lin DZ; Chou HC; Chu JY; Yen TJ
    Nano Lett; 2018 Feb; 18(2):881-885. PubMed ID: 29281295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-molecule resonance Raman effect in a plasmonic nanocavity.
    Jaculbia RB; Imada H; Miwa K; Iwasa T; Takenaka M; Yang B; Kazuma E; Hayazawa N; Taketsugu T; Kim Y
    Nat Nanotechnol; 2020 Feb; 15(2):105-110. PubMed ID: 31959928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles.
    Rodriguez RD; Sheremet E; Deckert-Gaudig T; Chaneac C; Hietschold M; Deckert V; Zahn DR
    Nanoscale; 2015 Jun; 7(21):9545-51. PubMed ID: 25948319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of the tip shape on the localized field enhancement and far field radiation pattern of the plasmonic inverted pyramidal nanostructures with the tips for surface-enhanced Raman scattering.
    Cheng HH; Chen SW; Chang YY; Chu JY; Lin DZ; Chen YP; Li JH
    Opt Express; 2011 Oct; 19(22):22125-41. PubMed ID: 22109056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Apex-Confined Plasmonic Tip for High Resolution Tip-Enhanced Raman Spectroscopic Imaging of Carbon Nanotubes.
    Meng B; Xie Y; Chen L; Wang H; Li M; Dong Z
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):16984-16990. PubMed ID: 36946568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Etchant-based design of gold tip apexes for plasmon-enhanced Raman spectromicroscopy.
    Kharintsev S; Alekseev A; Loos J
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():139-143. PubMed ID: 27501486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical investigation of a plasmonic substrate with multi-resonance for surface enhanced hyper-Raman scattering.
    Zhu S; Fan C; Ding P; Liang E; Hou H; Wu Y
    Sci Rep; 2018 Aug; 8(1):11891. PubMed ID: 30089880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy.
    Lu G; Liu J; Zhang T; Li W; Hou L; Luo C; Lei F; Manfait M; Gong Q
    Nanoscale; 2012 Jun; 4(11):3359-64. PubMed ID: 22569965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optoplasmonic probe to realize scanning near-field Raman microscopy.
    Liu Y; Hu D; Pang L; Gao F; Zhang Z; Du J
    Opt Express; 2016 Mar; 24(5):5243-5252. PubMed ID: 29092349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strain and Hole Gas Induced Raman Shifts in Ge-Si(x)Ge(1-x) Core-Shell Nanowires Using Tip-Enhanced Raman Spectroscopy.
    Zhang Z; Dillen DC; Tutuc E; Yu ET
    Nano Lett; 2015 Jul; 15(7):4303-10. PubMed ID: 26053999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of apertureless near-field scanning optical microscope tips for tip-enhanced Raman spectroscopy.
    Kodama T; Umezawa T; Watanabe S; Ohtani H
    J Microsc; 2008 Feb; 229(Pt 2):240-6. PubMed ID: 18304079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon-enhanced Raman scattering by carbon nanotubes optically coupled with near-field cavities.
    Heeg S; Oikonomou A; Fernandez-Garcia R; Lehmann C; Maier SA; Vijayaraghavan A; Reich S
    Nano Lett; 2014; 14(4):1762-8. PubMed ID: 24605932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering.
    Du L; Lei DY; Yuan G; Fang H; Zhang X; Wang Q; Tang D; Min C; Maier SA; Yuan X
    Sci Rep; 2013 Oct; 3():3064. PubMed ID: 24165970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.