These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25977812)

  • 1. High-resolution gene expression data from blastoderm embryos of the scuttle fly Megaselia abdita.
    Wotton KR; Jiménez-Guri E; Crombach A; Cicin-Sain D; Jaeger J
    Sci Data; 2015; 2():150005. PubMed ID: 25977812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SuperFly: a comparative database for quantified spatio-temporal gene expression patterns in early dipteran embryos.
    Cicin-Sain D; Pulido AH; Crombach A; Wotton KR; Jiménez-Guri E; Taly JF; Roma G; Jaeger J
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D751-5. PubMed ID: 25404137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita.
    Wotton KR; Jiménez-Guri E; Crombach A; Janssens H; Alcaine-Colet A; Lemke S; Schmidt-Ott U; Jaeger J
    Elife; 2015 Jan; 4():. PubMed ID: 25560971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal co-ordinate gene regulation and axis polarity in the scuttle fly Megaselia abdita.
    Wotton KR; Jiménez-Guri E; Jaeger J
    PLoS Genet; 2015 Mar; 11(3):e1005042. PubMed ID: 25757102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BMP-dependent serosa and amnion specification in the scuttle fly Megaselia abdita.
    Rafiqi AM; Park CH; Kwan CW; Lemke S; Schmidt-Ott U
    Development; 2012 Sep; 139(18):3373-82. PubMed ID: 22874914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoupling from yolk sac is required for extraembryonic tissue spreading in the scuttle fly
    Caroti F; González Avalos E; Noeske V; González Avalos P; Kromm D; Wosch M; Schütz L; Hufnagel L; Lemke S
    Elife; 2018 Oct; 7():. PubMed ID: 30375972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A staging scheme for the development of the scuttle fly Megaselia abdita.
    Wotton KR; Jiménez-Guri E; García Matheu B; Jaeger J
    PLoS One; 2014; 9(1):e84421. PubMed ID: 24409295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The scuttle fly Megaselia abdita (Phoridae): a link between Drosophila and Mosquito development.
    Rafiqi AM; Lemke S; Schmidt-Ott U
    Cold Spring Harb Protoc; 2011 Apr; 2011(4):pdb.emo143. PubMed ID: 21460041
    [No Abstract]   [Full Text] [Related]  

  • 9. Expression and regulation of caudal in the lower cyclorrhaphan fly Megaselia.
    Stauber M; Lemke S; Schmidt-Ott U
    Dev Genes Evol; 2008 Feb; 218(2):81-7. PubMed ID: 18214532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae).
    Stauber M; Taubert H; Schmidt-Ott U
    Proc Natl Acad Sci U S A; 2000 Sep; 97(20):10844-9. PubMed ID: 10995461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postgastrular zen expression is required to develop distinct amniotic and serosal epithelia in the scuttle fly Megaselia.
    Rafiqi AM; Lemke S; Schmidt-Ott U
    Dev Biol; 2010 May; 341(1):282-90. PubMed ID: 20144604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gap Gene Regulatory Dynamics Evolve along a Genotype Network.
    Crombach A; Wotton KR; Jiménez-Guri E; Jaeger J
    Mol Biol Evol; 2016 May; 33(5):1293-307. PubMed ID: 26796549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptomics of early dipteran development.
    Jiménez-Guri E; Huerta-Cepas J; Cozzuto L; Wotton KR; Kang H; Himmelbauer H; Roma G; Gabaldón T; Jaeger J
    BMC Genomics; 2013 Feb; 14():123. PubMed ID: 23432914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary origin of the amnioserosa in cyclorrhaphan flies correlates with spatial and temporal expression changes of zen.
    Rafiqi AM; Lemke S; Ferguson S; Stauber M; Schmidt-Ott U
    Proc Natl Acad Sci U S A; 2008 Jan; 105(1):234-9. PubMed ID: 18172205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bicoid occurrence and Bicoid-dependent hunchback regulation in lower cyclorrhaphan flies.
    Lemke S; Stauber M; Shaw PJ; Rafiqi AM; Prell A; Schmidt-Ott U
    Evol Dev; 2008; 10(4):413-20. PubMed ID: 18638318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolution of the gene regulatory networks patterning the Drosophila Blastoderm.
    Chipman AD
    Curr Top Dev Biol; 2020; 139():297-324. PubMed ID: 32450964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of gap gene expression canalization in the Drosophila blastoderm.
    Gursky VV; Panok L; Myasnikova EM; Manu ; Samsonova MG; Reinitz J; Samsonov AM
    BMC Syst Biol; 2011; 5():118. PubMed ID: 21794172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional evolution of a morphogenetic gradient.
    Kwan CW; Gavin-Smyth J; Ferguson EL; Schmidt-Ott U
    Elife; 2016 Dec; 5():. PubMed ID: 28005004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic analysis of the gap gene system in the moth midge Clogmia albipunctata.
    García-Solache M; Jaeger J; Akam M
    Dev Biol; 2010 Aug; 344(1):306-18. PubMed ID: 20433825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation.
    Manu ; Surkova S; Spirov AV; Gursky VV; Janssens H; Kim AR; Radulescu O; Vanario-Alonso CE; Sharp DH; Samsonova M; Reinitz J
    PLoS Biol; 2009 Mar; 7(3):e1000049. PubMed ID: 19750121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.