BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25977947)

  • 1. A general method for synthesizing enzyme-polymer conjugates in reverse emulsions using Pluronic as a reactive surfactant.
    Wu X; Ge J; Zhu J; Zhang Y; Yong Y; Liu Z
    Chem Commun (Camb); 2015 Jun; 51(47):9674-7. PubMed ID: 25977947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reusability of surfactant-coated Candida rugosa lipase immobilized in gelatin microemulsion-based organogels for ethyl isovalerate synthesis.
    Dandavate V; Madamwar D
    J Microbiol Biotechnol; 2008 Apr; 18(4):735-41. PubMed ID: 18467869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization.
    Hou C; Qi Z; Zhu H
    Colloids Surf B Biointerfaces; 2015 Apr; 128():544-551. PubMed ID: 25784302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation and activity of lipase B from Candida antarctica in bicontinuous microemulsions.
    Subinya M; Steudle AK; Jurkowski TP; Stubenrauch C
    Colloids Surf B Biointerfaces; 2015 Jul; 131():108-14. PubMed ID: 25973762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilized Candida antarctica lipase B: Hydration, stripping off and application in ring opening polyester synthesis.
    Idris A; Bukhari A
    Biotechnol Adv; 2012; 30(3):550-63. PubMed ID: 22041165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-responsive enzyme-polymer nanoconjugates with enhanced catalytic activities in organic media.
    Zhu J; Zhang Y; Lu D; Zare RN; Ge J; Liu Z
    Chem Commun (Camb); 2013 Jul; 49(54):6090-2. PubMed ID: 23727906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of sucrose-6-acetate catalyzed by surfactant-coated Candida rugosa lipase immobilized on sol-gel supports.
    Zhong X; Qian J; Guo H; Hu Y; Liu M
    Bioprocess Biosyst Eng; 2014 May; 37(5):813-8. PubMed ID: 24037039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for biocatalysis in low-water media.
    Mukherjee J; Solanki K; Gupta MN
    Methods Mol Biol; 2013; 1051():117-27. PubMed ID: 23934801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of Lipase in Polymerized High Internal Phase Emulsions.
    Andler SM; Goddard JM
    J Agric Food Chem; 2018 Apr; 66(14):3619-3623. PubMed ID: 29582657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of hydrophobic esters in a bicontinuous microemulsion catalysed by lipase B from Candida antarctica.
    Steudle AK; Subinya M; Nestl BM; Stubenrauch C
    Chemistry; 2015 Feb; 21(6):2691-700. PubMed ID: 25512180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The atypical lipase B from Candida antarctica is better adapted for organic media than the typical lipase from Thermomyces lanuginosa.
    Salis A; Svensson I; Monduzzi M; Solinas V; Adlercreutz P
    Biochim Biophys Acta; 2003 Mar; 1646(1-2):145-51. PubMed ID: 12637021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic study of Candida antarctica lipase B immobilization using poly(methyl methacrylate) nanoparticles obtained by miniemulsion polymerization as support.
    Valério A; Nicoletti G; Cipolatti EP; Ninow JL; Araújo PH; Sayer C; de Oliveira D
    Appl Biochem Biotechnol; 2015 Mar; 175(6):2961-71. PubMed ID: 25578158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of additives on lipase immobilization in microemulsion-based organogels.
    Zhang WW; Wang N; Zhang L; Wu WX; Hu CL; Yu XQ
    Appl Biochem Biotechnol; 2014 Mar; 172(6):3128-40. PubMed ID: 24497044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unexpected reaction profile observed in the synthesis of propyl laurate when using Candida rugosa lipases immobilized in microemulsions based organogels.
    Domínguez de María P; Xenakis A; Stamatis H; Sinisterra JV
    Biotechnol Lett; 2004 Oct; 26(19):1517-20. PubMed ID: 15604790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced conjugation of Candida rugosa lipase onto multiwalled carbon nanotubes using reverse micelles as attachment medium and application in nonaqueous biocatalysis.
    Raghavendra T; Vahora U; Shah AR; Madamwar D
    Biotechnol Prog; 2014; 30(4):828-36. PubMed ID: 24828252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of deactivation thermodynamics of lipase immobilized on polymeric carrier.
    Badgujar KC; Bhanage BM
    Bioprocess Biosyst Eng; 2017 May; 40(5):741-757. PubMed ID: 28265745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The immobilization of Candida rugosa lipase on the modified polyethersulfone with MOF nanoparticles as an excellent performance bioreactor membrane.
    Zare A; Bordbar AK; Razmjou A; Jafarian F
    J Biotechnol; 2019 Jan; 289():55-63. PubMed ID: 30458213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun polylactic acid and polyvinyl alcohol fibers as efficient and stable nanomaterials for immobilization of lipases.
    Sóti PL; Weiser D; Vigh T; Nagy ZK; Poppe L; Marosi G
    Bioprocess Biosyst Eng; 2016 Mar; 39(3):449-59. PubMed ID: 26724947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity and spatial distribution of Candida antarctica lipase B immobilized on macroporous organic polymeric adsorbents.
    Nielsen AV; Andric P; Nielsen PM; Pedersen LH
    Langmuir; 2014 May; 30(19):5429-34. PubMed ID: 24735165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer Modification of Lipases, Substrate Interactions, and Potential Inhibition.
    Rahman MS; Brown J; Murphy R; Carnes S; Carey B; Averick S; Konkolewicz D; Page RC
    Biomacromolecules; 2021 Feb; 22(2):309-318. PubMed ID: 33416313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.